Red wine has been of interest recently because many
poly-phenols, that are considered to be good for health, are
contained therein. Since ultrasonic irradiation accelerates
maturation, its effects on phenolic compounds in wine were
investigated in this study. Effects were evaluated using the indices
developed by Glories. It was found that weak ultrasonic irradiation
promotes an increase in the amount of phenolic compounds in red
wine.
Application of ultrasound for accelerating the extraction of nutriments in food processing has been attempted. However, conditions of exposure to ultrasound were not clear in previous studies. This paper reports on the relationship between the ultrasonic pressure and the amount of extracted protein from soybeans. Experiments were conducted using a beaker, in which the ultrasonic fields were precisely measured. Soybean flakes suspended in water were put in the beaker and placed in a water tank. The amount of extracted protein in water upon ultrasonic exposure was calculated by the Kjeldahl method. It was found that the amount of extracted protein increased in proportion to ultrasonic pressure up to the total amount of soybean protein soluble in water. Furthermore, this paper describes the denaturation of the protein produced by the ultrasonic cavitation.
The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.
Application of ultrasound to accelerate the dialysis separation of electrolytes through a membrane was studied with ultrasonic dialysis equipment. The experiments were conducted with cellophane membrane and KCl solution, CH3COONa solution, and a mixture of KCl and saponin solutions. It was found that the diffusion velocity of electrolyte through a membrane with ultrasonic irradiation is faster than that without ultrasonic irradiation, and it increases with acoustic pressure. It has become clear that the reasons for enhancement caused by ultrasound are increase in liquid particle velocity and diffusion coefficient due to ultrasonic vibration. It was confirmed that the permeability of the membrane was not degraded by ultrasound in the ranges of acoustic pressure and irradiation time in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.