Many genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome. Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are specifically packaged with nucleosomes containing histone H3 trimethylated on Lys27. This chromatin mark is established on these unmethylated CpG island genes early in development and then maintained in differentiated cell types by the presence of an EZH2-containing Polycomb complex. In cancer cells, as opposed to normal cells, the presence of this complex brings about the recruitment of DNA methyl transferases, leading to de novo methylation. These results suggest that tumor-specific targeting of de novo methylation is pre-programmed by an established epigenetic system that normally has a role in marking embryonic genes for repression.
The Wnt pathway controls numerous developmental processes via the -catenin-TCF/LEF transcription complex. Deregulation of the pathway results in the aberrant accumulation of -catenin in the nucleus, often leading to cancer. Normally, cytoplasmic -catenin associates with APC and axin and is continuously phosphorylated by GSK-3, marking it for proteasomal degradation. Wnt signaling is considered to prevent GSK-3 from phosphorylating -catenin, thus causing its stabilization. However, the Wnt mechanism of action has not been resolved. Here we study the regulation of -catenin phosphorylation and degradation by the Wnt pathway. Using mass spectrometry and phosphopeptide-specific antibodies, we show that a complex of axin and casein kinase I (CKI) induces -catenin phosphorylation at a single site: serine 45 (S45). Immunopurified axin and recombinant CKI phosphorylate -catenin in vitro at S45; CKI inhibition suppresses this phosphorylation in vivo. CKI phosphorylation creates a priming site for GSK-3 and is both necessary and sufficient to initiate the -catenin phosphorylation-degradation cascade. Wnt3A signaling and Dvl overexpression suppress S45 phosphorylation, thereby precluding the initiation of the cascade. Thus, a single, CKI-dependent phosphorylation event serves as a molecular switch for the Wnt pathway.
Dysfunction and loss of retinal pigment epithelium (RPE) leads to degeneration of photoreceptors in age-related macular degeneration and subtypes of retinitis pigmentosa. Human embryonic stem cells (hESCs) may serve as an unlimited source of RPE cells for transplantation in these blinding conditions. Here we show the directed differentiation of hESCs toward an RPE fate under defined culture conditions. We demonstrate that nicotinamide promotes the differentiation of hESCs to neural and subsequently to RPE fate. In the presence of nicotinamide, factors from the TGF-beta superfamily, which presumably pattern RPE development during embryogenesis, further direct RPE differentiation. The hESC-derived pigmented cells exhibit the morphology, marker expression, and function of authentic RPE and rescue retinal structure and function after transplantation to an animal model of retinal degeneration caused by RPE dysfunction. These results are an important step toward the future use of hESCs to replenish RPE in blinding diseases.
The Rex-1 (Zfp-42) gene, which encodes an acidic zinc finger protein, is expressed at high levels in embryonic stem (ES) and F9 teratocarcinoma cells. Prior analysis identified an octamer motif in the Rex-1 promoter which is required for promoter activity in undifferentiated F9 cells and is involved in retinoic acid (RA)-associated reduction in expression. We show here that the Oct-3/4 transcription factor, but not Oct-1, can either activate or repress the Rex-1 promoter, depending on the cellular environment. Rex-1 repression is enhanced by E1A. The protein domain required for Oct-3/4 activation was mapped to amino acids 1 to 35, whereas the domain required for Oct-3/4 repression was mapped to amino acids 61 to 126, suggesting that the molecular mechanisms underlying transcriptional activation and repression differ. Like Oct-3/4, Oct-6 can also lower the expression of the Rex-1 promoter via the octamer site, and the amino-terminal portion of Oct-6 mediates this repression. In addition to the octamer motif, a novel positive regulatory element, located immediately 5 of the octamer motif, was identified in the Rex-1 promoter. Mutations in this element greatly reduce Rex-1 promoter activity in F9 cells. High levels of a binding protein(s), designated Rox-1, recognize this novel DNA element in F9 cells, and this binding activity is reduced following RA treatment. Taken together, these results indicate that the Rex-1 promoter is regulated by specific octamer family members in early embryonic cells and that a novel element also contributes to Rex-1 expression.
-TrCP/E3RS (E3RS) is the F-box protein that functions as the receptor subunit of the SCF-TrCP ubiquitin ligase (E3). Surprisingly, although its two recognized substrates, IB␣ and -catenin, are present in the cytoplasm, we have found that E3RS is located predominantly in the nucleus. Here we report the isolation of the major E3RS-associated protein, hnRNP-U, an abundant nuclear phosphoprotein. This protein occupies E3RS in a specific and stoichiometric manner, stabilizes the E3 component, and is likely responsible for its nuclear localization. hnRNP-U binding was abolished by competition with a pIB␣ peptide, or by a specific point mutation in the E3RS WD region, indicating an E3-substrate-type interaction. However, unlike pIB␣, which is targeted by SCF -TrCP for degradation, the E3-bound hnRNP-U is stable and is, therefore, a pseudosubstrate. Consequently, hnRNP-U engages a highly neddylated active SCF -TrCP , which dissociates in the presence of a high-affinity substrate, resulting in ubiquitination of the latter. Our study points to a novel regulatory mechanism, which secures the localization, stability, substrate binding threshold, and efficacy of a specific protein-ubiquitin ligase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.