Abstract. Edible bird nest (EBN) is a dried glutinous secretion from the salivary glands of several different swiftlet species. It is widely consumed as a health food due to its high beneficial effects to human health and has been considered to be one of the most precious food items by the Chinese for thousands of years. The aim of this study was to evaluate the effect of enzymatic hydrolysis on protein solubility (μg/g), the degree of hydrolysis (DH%), and peptide content (μg/g) of edible bird's nest hydrolysate. Initial protein solubility of boiled EBN was 25.5mg/g EBN. Treating the solubilized EBN with pancreatin 4NF for 1.0 -1.5hours increased EBN protein solubility to 163.9mg/g and produced hydrolysate with DH% of 86.5% and 109.5mg/g peptide. EBN hydrolyzed with alcalase for 1.5 hours produced hydrolysate with protein solubility of 86.7mg/g, 82.7 DH% and had 104.1mg/g peptide content.
This study aims to determine the effects of various alkaline pHs on the nutritional and functional properties of protein isolated from defatted chia flour (DCF). The DCF isolated using alkali extraction method at pH 8.5, 10.0, and 12.0 were coded as CPI-8.5, CPI-10.0, and CPI-12.0, respectively. The highest extraction yield and protein recovery yield was demonstrated by CPI-12.0 (19.10 and 59.63%, respectively), with a total protein content of 74.53%, and glutelin showed the highest portion (79.95%). The CPI-12.0 also demonstrated the most elevated essential (36.87%), hydrophobic (33.81%), and aromatic (15.54%) amino acid content among other samples. The DCF exhibited the highest water (23.90 gg−1) and oil (8.23 gg−1) absorption capacity, whereas the CPI-8.5 showed the highest protein solubility (72.31%) at pH 11. DCF demonstrated the highest emulsifying capacity at pH 11 (82.13%), but the highest stability was shown at pH 5 (82.05%). Furthermore, CPI-12.0 at pH 11 shows the highest foaming capacity (83.16%) and stability (83.10%). Despite that, the CPI-10.0 manifested the highest antioxidant capacity (DPPH: 42.48%; ABTS: 66.23%; FRAP: 0.19), as well as ACE-I (35.67%). Overall, the extraction pH had significant effects in producing chia protein isolates (CPI) with improved nutritional and functional qualities.
The application of enzymatic peeling technology aided with vacuum infusion has been studied extensively in this study to ease the peeling process of key lime (Citrus aurantifolia) fruit. Through response surface methodology, the optimum parameters such as vacuum pressure (450-600 mmHg), pectinase concentration (0.5-1.0%, v/v), duration of soaking time (15-45 min) and their efects on physicochemical properties of key lime fruit have been determined. The optimal conditions determined in this study were 600 mmHg of vacuum pressure, 0.93% v/v of pectinase concentration and 45 min of soaking time. The physicochemical properties analysed such as colour, pH, titratable acidity, total soluble solids, moisture content, and ascorbic acid content show no signifcant (p>0.05) efect of enzymatic-peeling on quality parameters of key lime fruit products. The intensity of puree colour was signifcantly (p≤0.05) improved by the vacuum-aided enzymatic treatment. Overall, vacuum-aided enzymatic treatment is an improved peeling method compared to the conventional method as it simplifes the process, reduces processing time and retains quality parameters of the key lime fruit products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.