The goal of still color image segmentation is to divide the image into homogeneous regions.Object extraction, object recognition and object-based compression are typical applications that use still segmentation as a low-level image processing. In this paper we present a new method for color image segmentation. The proposed algorithm divides the image into homogeneous regions by local thresholds. The number of thresholds and their values are adaptively derived by an automatic process, where local information is taken into consideration. First, the watershed algorithm is applied. Its results are used as an initialization for the next step, which is iterative merging process. During the iterative process regions are merged and local thresholds are derived. The thresholds are determined one-by-one at different times during the merging process. Every threshold is calculated by local information on any region and its surroundings. Any statistical information on the input images is not given. The algorithm is found to be reliable and robust to different kind of images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.