New low-temperature thermochronological data from 80 samples in eastern Kyrgyzstan are combined with previously published data from 61 samples to constrain exhumation in a number of mountain ranges in the Central Kyrgyz Tien Shan. All sampled ranges are found to have a broadly consistent Cenozoic exhumation history, characterized by initially low cooling rates (<1°C/Myr) followed by a series of increases in exhumation that occurred diachronously across the region in the late Cenozoic that are interpreted to record the onset of deformation in different mountain ranges. Combined with geological estimates for the onset of proximal deformation, our data suggest that the Central Kyrgyz Tien Shan started deforming in the late Oligocene-early Miocene, leading to the development of several, widely spaced mountain ranges separated by large intermontane basins. Subsequently, more ranges have been constructed in response to significant shortening increases across the Central Kyrgyz Tien Shan, notably in the late Miocene. The order of range construction is interpreted to reflect variations in the susceptibility of inherited structures to reactivation. Reactivated structures are also shown to have significance along strike variations in fault vergence and displacement, which have influenced the development and growth of individual mountain ranges. Moreover, the timing of deformation allows the former extent of many intermontane basins that have since been partitioned to be inferred; this can be linked to the highly time-transgressive onset of late Cenozoic coarse clastic sedimentation.
[1] Basement-cored ranges formed by reverse faulting within intracontinental mountain belts are often composed of poly-deformed lithologies. Geological data capable of constraining the timing, magnitude, and distribution of the most recent deformational phase are usually missing in such ranges. In this paper, we present new low temperature thermochronological and geological data from a transect through the basement-cored Terskey Range, located in the Kyrgyz Tien Shan. Using these data, we are able to investigate the range's late Cenozoic deformation for the first time. Displacements on reactivated faults are constrained and deformation of thermochronologically derived structural markers is assessed. These structural markers postdate the earlier deformational phases, providing the only record of Cenozoic deformation and of the reactivation of structures within the Terskey Range. Overall, these structural markers have a southern inclination, interpreted to reflect the decreasing inclination of the reverse fault bounding the Terskey Range. Our thermochronological data are also used to investigate spatial and temporal variations in the exhumation of the Terskey Range, identifying a three-stage Cenozoic exhumation history: (1) virtually no exhumation in the Paleogene, (2) increase to slightly higher exhumation rates at~26-20 Ma, and (3) significant increase in exhumation starting at~10 Ma.
A broad array of new provenance and stable isotope data are presented from two magnetostratigraphically dated sections in the south‐eastern Issyk Kul basin of the Central Kyrgyz Tien Shan. The results presented here are discussed and interpreted for two plausible magnetostratigraphic age models. A combination of zircon U‐Pb provenance, paleocurrent and conglomerate clast count analyses is used to determine sediment provenance. This analysis reveals that the first coarse‐grained, syn‐tectonic sediments (Dzhety Oguz formation) were sourced from the nearby Terskey Range, supporting previous thermochronology‐based estimates of a ca. 25–20 Ma onset of deformation in the range. Climate variations are inferred using carbonate stable isotope (δ18O and δ13C) data from 53 samples collected in the two sections and are compared with the oxygen isotope compositions of modern water from 128 samples. Two key features are identified in the stable isotope data set derived from the sediments: (1) isotope values, in particular δ13C, decrease between ca. 26.0 and 23.6 or 25.6 and 21.0 Ma, and (2) the scatter of δ18O values increased significantly after ca. 22.6 or 16.9 Ma. The first feature is interpreted to reflect progressively wetter conditions. Because this feature slightly post‐dates the onset of deformation in the Terskey Range, we suggest that it has been caused by orographically enhanced precipitation, implying that surface uplift accompanied late Cenozoic deformation and rock uplift in the Terskey Range. The increased scatter could reflect variable moisture source or availability caused by global climate change following the onset of Miocene glaciations at ca. 22.6 Ma, or enhanced evaporation during the Mid‐Miocene climatic optimum at ca. 17–15 Ma.
The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris‐flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip‐slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip‐slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer‐term coevolution of topography and seismogenic processes in similar structural settings worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.