Seafloor topography affects the sediment gravity flows that interact with it. Understanding this interaction is critical for accurate predictions of sediment distribution and paleogeographic or structural reconstructions of deep-water basins. The effects of seafloor topography can be seen from the bed scale, through facies transitions toward intra-basinal slopes, to the basin scale, where onlap patterns reveal the spatial evolution of deep-water systems. Basin-margin onlap patterns are typically attributed to allogenic factors, such as sediment supply signals or subsidence rates, with few studies emphasizing the importance of predictable spatio-temporal autogenic flow evolution. This study aims to assess the autogenic controls on onlap by documenting onlap styles in the confined Eocene-to-Oligocene deep-marine Annot Basin of SE France. Measured sections, coupled with architectural observations, mapping, and paleogeographical interpretations, are used to categorize onlap styles and place them within a generic stratigraphic model. These observations are compared with a simple numerical model. The integrated stratigraphic model predicts that during progradation of a deep-water system into a confined basin successive onlap terminations will be partially controlled by the effect of increasing flow concentration. Initially thin-bedded low-density turbidites of the distal lobe fringe are deposited and drape basinal topography. As the system progrades these beds become overlain by hybrid beds and other deposits of higher-concentration flows developed in the proximal lobe fringe. This transition is therefore marked by intra-formational onlap against the underlying and lower-concentration lobe fringe that drapes the topography. Continued progradation results in deposition of lower-concentration deposits in the lobe off-axis, resulting in either further intra-formational onlap against the lobe fringe or onlap directly against the hemipelagic basin margin. Basinal relief is gradually reduced as axial and higher-volume flows become more prevalent during progradation, causing the basin to become a bypass zone for sediment routed down-dip. This study presents an autogenic mechanism for generating complex onlap trends without the need to invoke allogenic processes. This has implications for sequence-stratigraphic interpretations, basin subsidence history, and forward modeling of confined deep-water basins.
Turbidity currents distribute sediment across the seafloor, forming important archives of tectonic and climatic change on the Earth’s surface. Turbidity current deposition is affected by seafloor topography, therefore understanding the interaction of turbidity currents with topography increases our ability to interpret tectonic and climatic change from the stratigraphic record. Here, using Shields-scaled physical models of turbidity currents, we aim to better constrain the effect of confining topography on turbidity current deposition and erosion. The subaqueous topography consists of an erodible barrier orientated 1) parallel, 2) oblique and 3) perpendicular to the incoming flow. An unconfined control run generated a supercritical turbidity current that decelerated across the slope, forming a lobate deposit that thickened basinwards before abruptly thinning. Flow-parallel confinement resulted in erosion of the barrier by the flow, enhanced axial velocities, and generated a deposit that extended farther into the basin than when unconfined. Oblique confinement caused partial deflection and acceleration of the flow along the barrier, which resulted in a deposit that bifurcated around the barrier. Forced deceleration at the barrier resulted in thickened deposition on the slope. Frontal confinement resulted in onlap and lateral spreading at the barrier, along with erosion of the barrier and down-dip overspill that formed a deposit deeper in the basin. Acceleration down the back of the barrier by this overspill resulted in the generation of a plunge-pool at the foot of the barrier as the flow impacted the slope substrate. Observations from ancient and modern turbidity current systems can be explained by our physical models, such as: the deposition of thick sandstones upstream of topography, the deposition of thin sandstones high on confining slopes, and the complex variety of stacking patterns produced by confinement. These models also highlight the impact of flow criticality on confined turbidity currents, with topographically-forced transitions between supercritical and subcritical flow conditions suggested to impact the depositional patterns of these flows.
Behavior of sediment gravity flows can be influenced by seafloor topography associated with salt structures; this can modify the depositional architecture of deep-water sedimentary systems. Typically, salt-influenced deep-water successions are poorly imaged in seismic reflection data, and exhumed systems are rare, hence the detailed sedimentology and stratigraphic architecture of these systems remains poorly understood. The exhumed Triassic (Keuper) Bakio and Guernica salt bodies in the Basque–Cantabrian Basin, Spain, were active during deep-water sedimentation. The salt diapirs grew reactively, then passively, during the Aptian–Albian, and are flanked by deep-water carbonate (Aptian–earliest Albian Urgonian Group) and siliciclastic (middle Albian–Cenomanian Black Flysch Group) successions. The study compares the depositional systems in two salt-influenced minibasins, confined (Sollube basin) and partially confined (Jata basin) by actively growing salt diapirs, comparable to salt-influenced minibasins in the subsurface. The presence of a well-exposed halokinetic sequence, with progressive rotation of bedding, beds that pinch out towards topography, soft-sediment deformation, variable paleocurrents, and intercalated debrites indicate that salt grew during deposition. Overall, the Black Flysch Group coarsens and thickens upwards in response to regional axial progradation, which is modulated by laterally derived debrites from halokinetic slopes. The variation in type and number of debrites in the Sollube and Jata basins indicates that the basins had different tectonostratigraphic histories despite their proximity. In the Sollube basin, the routing systems were confined between the two salt structures, eventually depositing amalgamated sandstones in the basin axis. Different facies and architectures are observed in the Jata basin due to partial confinement. Exposed minibasins are individualized, and facies vary both spatially and temporally in agreement with observations from subsurface salt-influenced basins. Salt-related, active topography and the degree of confinement are shown to be important modifiers of depositional systems, resulting in facies variability, remobilization of deposits, and channelization of flows. The findings are directly applicable to the exploration and development of subsurface energy reservoirs in salt basins globally, enabling better prediction of depositional architecture in areas where seismic imaging is challenging.
Sediment gravity flow behaviour is influenced by seafloor topography associated with salt structures, which controls the depositional architecture of deep-water sedimentary systems. Typically, salt-influenced deep-water successions are poorly-imaged in seismic reflection data and exhumed systems are rare, hence the detailed sedimentology and stratigraphic architecture of these systems remains poorly understood. The exhumed Triassic (Keuper) Bakio and Guernica salt bodies in the Basque-Cantabrian Basin, Spain were active during deep-water sedimentation. The salt diapirs grew reactively, then passively, during the Aptian-Albian, and are flanked by deep-water carbonate (Aptian-earliest Albian Urgonian Group) and siliciclastic (middle Albian-Cenomanian Black Flysch Group) successions. The study compares the deposition in two salt-influenced confined (Sollube basin) and partially-confined (Jata basin) minibasins by actively growing salt diapirs, comparable to salt-influenced minibasins in the subsurface. The presence of a well-exposed halokinetic sequence, beds that pinch out towards topography, soft sediment deformation, variable paleocurrents and intercalated mass transport deposits (MTDs) indicate that salt grew during deposition. Overall, the Black Flysch Group coarsens- and thickens-upwards in response to regional axial progradation, which is modulated by laterally-derived MTDs from halokinetic slopes. The variation in type and number of MTDs within the Sollube and Jata basins indicate the basins had different tectono-stratigraphic histories despite their proximity. In the Sollube basin, the routeing systems were confined between the two salt structures eventually depositing amalgamated sandstones in the basin’s axis. Different facies and architectures are observed in the Jata basin due to partial confinement. The findings show exposed minibasins are individualised and that facies vary both spatially and temporally in agreement with subsurface salt-influenced basins. Salt-related, active topography and the degree of confinement are shown to be important modifiers of depositional systems, resulting in facies variability, remobilisation of deposits and ‘channelisation’ of flows. The findings are directly applicable to the exploration and development of subsurface energy reservoirs in salt basins globally, enabling better prediction of depositional architecture in areas where seismic imaging is challenging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.