The original publication is available at ieeexplore.ieee.org.International audienceThis paper presents a quantitative extension for the linear-time temporal logic LTL allowing to specify the number of states satisfying certain sub-formulas along paths. We give decision procedures for the satisfiability and model checking of this new temporal logic and study the complexity of the corresponding problems. Furthermore we show that the problems become undecidable when more expressive constraints are considered
Abstract. This paper presents a range of quantitative extensions for the temporal logic CTL. We enhance temporal modalities with the ability to constrain the number of states satisfying certain sub-formulas along paths. By selecting the combinations of Boolean and arithmetic operations allowed in constraints, one obtains several distinct logics generalizing CTL. We provide a thorough analysis of their expressiveness and succinctness, and of the complexity of their model-checking and satisfiability problems (ranging from P-complete to undecidable). Finally, we present two alternative logics with similar features and provide a comparative study of the properties of both variants.
The original publication is available at www.springerlink.com.International audienceThis paper presents a range of quantitative extensions for the temporal logic CTL. We enhance temporal modalities with the ability to constrain the number of states satisfying certain sub-formulas along paths. By selecting the combinations of Boolean and arithmetic operations allowed in constraints, one obtains several distinct logics generalizing CTL. We provide a thorough analysis of their expressiveness and of the complexity of their model-checking problem (ranging from P-complete to undecidable)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.