Analogues structurally related to anaplastic lymphoma kinase (ALK) inhibitor 1 were optimized for metabolic stability. The results from this endeavor not only led to improved metabolic stability, pharmacokinetic parameters, and in vitro activity against clinically derived resistance mutations but also led to the incorporation of activity for focal adhesion kinase (FAK). FAK activation, via amplification and/or overexpression, is characteristic of multiple invasive solid tumors and metastasis. The discovery of the clinical stage, dual FAK/ALK inhibitor 27b, including details surrounding SAR, in vitro/in vivo pharmacology, and pharmacokinetics, is reported herein.
Members of the JAK family of nonreceptor tyrosine kinases play a critical role in the growth and progression of many cancers and in inflammatory diseases. JAK2 has emerged as a leading therapeutic target for oncology, providing a rationale for the development of a selective JAK2 inhibitor. A program to optimize selective JAK2 inhibitors to combat cancer while reducing the risk of immune suppression associated with JAK3 inhibition was undertaken. The structure-activity relationships and biological evaluation of a novel series of compounds based on a 1,2,4-triazolo[1,5-a]pyridine scaffold are reported. Para substitution on the aryl at the C8 position of the core was optimum for JAK2 potency (17). Substitution at the C2 nitrogen position was required for cell potency (21). Interestingly, meta substitution of C2-NH-aryl moiety provided exceptional selectivity for JAK2 over JAK3 (23). These efforts led to the discovery of CEP-33779 (29), a novel, selective, and orally bioavailable inhibitor of JAK2.
A convergent stereocontrolled total synthesis of (-)-kendomycin (1) has been achieved. The synthesis proceeds with a longest linear sequence of 21 steps, beginning with commercially available 2,4-dimethoxy-3-methylbenzaldehyde (12). Highlights of the synthesis include an effective Petasis-Ferrier union/rearrangement tactic to construct the sterically encumbered tetrahydropyran ring, a ring-closing metathesis to generate the C(4a-13-20a) macrocycle, an effective epoxidation/deoxygenation sequence to isomerize the C(13,14) olefin, and a biomimetic quinone-methide-lactol assembly to complete the synthesis.
A novel 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine scaffold has been designed as a new kinase inhibitor platform mimicking the bioactive conformation of the well-known diaminopyrimidine motif. The design, synthesis, and validation of this new pyrrolo[2,1-f][1,2,4]triazine scaffold will be described for inhibitors of anaplastic lymphoma kinase (ALK). Importantly, incorporation of appropriate potency and selectivity determinants has led to the discovery of several advanced leads that were orally efficacious in animal models of anaplastic large cell lymphoma (ALCL). A lead inhibitor (30) displaying superior efficacy was identified and in depth in vitro/in vivo characterization will be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.