In this study we report on the hit optimization of substituted 3,5-diaryl-pyrazin-2(1H)-ones toward potent and effective platelet-derived growth factor receptor (PDGF-R) β-inhibitors. Originally, the 3,5-diarylpyrazin-2-one core was derived from the marine sponge alkaloid family of hamacanthins. In our first series compound 2 was discovered as a promising hit showing strong activity against PDGF-Rβ in the kinase assay (IC 50 = 0.5 μM). Furthermore, 2 was shown to be selective for PDGF-Rβ in a panel of 24 therapeutically relevant protein kinases. Molecular modeling studies on a PDGF-Rβ homology model using prediction of water thermodynamics suggested an optimization strategy for the 3,5-diaryl-pyrazin-2-ones as DFG-in binders by using a phenolic OH function to replace a structural water molecule in the ATP binding site. Indeed, we identified compound 38 as a highly potent inhibitor with an IC 50 value of 0.02 μM in a PDGF-Rβ enzymatic assay also showing activity against PDGF-R dependent cancer cells.
Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated.
In this study, we report on pyrazin-2(1H)-ones as lead for the development of potent adenosine triphosphate (ATP) competitive protein kinase inhibitors with implications as anti-cancer drugs. Initially, we identified the pyrazin-2(1H)-one scaffold from hamacanthins (deep sea marine sponge alkaloids) by Molecular Modeling studies as core binding motif in the ATP pocket of receptor tyrosine kinases (RTK), which are validated drug targets for the treatment of various neoplastic diseases. Structure-based design studies on a human RTK member PDGFR (platelet-derived growth factor receptor) suggested a straight forward lead optimization strategy. Accordingly, we focused on a Medicinal Chemistry project to develop pyrazin-2(1H)-ones as optimized PDGFR binders. In order to reveal Structure-Activity-Relationships (SAR), we established a flexible synthetic route via microwave mediated ring closure to asymmetric 3,5-substituted pyrazin-2(1H)-ones and produced a set of novel compounds. Herein, we identified highly potent PDGFR binders with IC50 values in an enzymatic assay below µM range, and possessing significant activity against PDGFR dependent cancer cells. Thus, marine hamacanthin-derived pyrazin-2(1H)-ones showing interesting properties as lead for their further development towards potent PDGFR-inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.