Vector periodic autoregressive time series models (PVAR) form an important class of time series for modelling data derived from climatology, hydrology, economics and electrical engineering, among others. In this article, we derive the asymptotic distributions of the least squares estimators of the model parameters in PVAR models, allowing the parameters in a given season to satisfy linear constraints. Residual autocorrelations from classical vector autoregressive and moving-average models have been found useful for checking the adequacy of a particular model. In view of this, we obtain the asymptotic distribution of the residual autocovariance matrices in the class of PVAR models, and the asymptotic distribution of the residual autocorrelation matrices is given as a corollary. Portmanteau test statistics designed for diagnosing the adequacy of PVAR models are introduced and we study their asymptotic distributions. The proposed test statistics are illustrated in a small simulation study, and an application with bivariate quarterly West German data is presented. Copyright 2008 The Authors. Journal compilation 2008 Blackwell Publishing Ltd
Periodic autoregressive (PAR) models extend the classical autoregressive models by allowing the parameters to vary with seasons. Selecting PAR time-series models can be computationally expensive, and the results are not always satisfactory. In this article, we propose a new automatic procedure to the model selection problem by using the genetic algorithm. The Bayesian information criterion is used as a tool to identify the order of the PAR model. The success of the proposed procedure is illustrated in a small simulation study, and an application with monthly data is presented.
In river flow analysis and forecasting there are some key elements to consider in order to obtain reliable results. For example, seasonality is often accounted for in statistical models because climatic oscillations occurring every year have an obvious impact on river flow. Further sources of alteration could be caused by changes in reservoir management, instrumentation or even unexpected shifts in climatic conditions. When these changes are ignored the statistical results can be strongly misleading. This paper develops an automatic procedure to estimate number and locations of changepoints in Periodic AutoRegressive models. These latter have been extensively used for modelling seasonality in hydrology, climatology, economics and electrical engineering, but there are very few papers devoted also to changepoints detection, moreover being limited to changes in mean or variance. In our proposal we allow
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.