We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat FLRW universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton's constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.Cosmological evolution as squeezing: a toy model for group field cosmology
Superrotations arise from singular vector fields on the celestial sphere in asymptotically flat space, and their finite integrated versions have been argued by Strominger and Zhiboedov to insert cosmic strings into the spacetime. In this work, we argue for an alternative definition of the action of superrotations on Minkowski space that avoids introducing any defects. This involves realizing the finite superrotation not as a diffeomorphism between spaces, but as a mapping of Minkowski space to itself that may be multivalued or non-surjective. This eliminates any defects in the bulk spacetime at the expense of allowing for defects in the boundary celestial sphere metric. We further explore the geometry of the spatial surfaces in the superrotated spaces, and note that they intersect null infinity at the singularity of the superrotation, causing a breakdown in the large r asymptotic expansion there. To determine how these surfaces embed into Minkowski space, a derivation of the finite superrotation transformation is presented in both Bondi and Newman-Unti gauges. The latter is particularly interesting, since the superrotations are shown to preserve the hyperbolic slicing of Minkowski space in Newman-Unti gauge, and this gauge also provides a means for extending the geometry beyond the Bondi coordinate patch. We argue that the new interpretation for the action of superrotations on spacetime motivates consideration of a wider class of celestial sphere metrics and asymptotic symmetry groups. Conical defect in the finite superrotationSuperrotations were proposed in [4,7] as an infinite-dimensional extension of the asymptotic symmetry group of asymptotically flat general relativity. They arise as generalizations of Lorentz transformations, and are characterized by their action on the celestial 2-sphere. The Lorentz group acts as the global conformal isometry group of the celestial sphere, while the superrotations act as local conformal isometries, which may not be globally defined due to singular points.
We propose a method for simulating an Unruh-DeWitt detector, coupled to a 1+1-dimensional massless scalar field, with a suitably-engineered χ (2) nonlinear interaction. In this simulation, the parameter playing the role of the detector acceleration is played by the relative inverse-groupvelocity gradient inside the nonlinear material. We identify experimental parameters that tune the detector energy gap, acceleration, and switching function. This system can simulate time-dependent acceleration, time-dependent detector energy gaps, and non-vacuum initial detector-field states. Furthermore, for very short materials, the system can simulate the weak anti-Unruh effect, in which the response of the detector decreases with acceleration. While some Unruh-related phenomena have been investigated in nonlinear optics, this is the first proposal for simulating an Unruh-DeWitt detector in these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.