Pumping units of the country use more than 300 billion kWh of electricity annually, i.e. more than 20% of the whole amount of electricity generated by the electric power network of the country (Leznov, Saving energy in pumping installations, 1991). In accordance with the requirements of the energy efficiency law, consumers should save energy in their companies. Water supply companies face a problem of low efficiency of the main technological equipment, such as pumping units supplying water into the network, and sewage pumping stations.
The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%; reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.
Abstract. The forecasting problem for energy facilities with a power exceeding 670 kW is currently one of the main. In connection with rules of the retail electricity market such customers also pay for actual energy consumption deviations from plan value. In compliance with the hierarchical stages of the electricity market a guaranteeing supplier is to respect the interests of distribution and generation companies that require load leveling. The answer to this question for industrial enterprise is possible only within technological process through implementation of energy-efficient processing chains with the adaptive function and forecasting tool. In such a circumstance the primary objective of a forecasting is reduce the energy consumption costs by taking account of the energy cost correlation for 24 hours for forming of pumping unit work schedule. The pumping unit virtual model with the variable frequency drive is considered. The forecasting tool and the optimizer are integrated into typical control circuit. Economic assessment of the optimization method was estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.