1. Research was performed in laboratory streams to evaluate periphytic biomass accrual, export, and community composition over a range of limiting nutrient (phosphorus) concentrations with variable velocity, and suspended sediment addition, in comparison to constant velocity and no suspended sediment. In fixed-velocity treatments, velocity increase to 6C) cm s"' significantly enhanced biomass accrual, but further increase resulted in substantial biomass reduction. Average biomass loss rates did not change significantly over a velocity range of 10-80 cm s"'. Diatoms were favoured at relatively high velocities and low phosphorus concentrations, whereas the blue-green Phormidium tended to dominate at higher SRP concentrations and the green Mougeotia seemed to prefer lower velocities.2. Sudden increases in velocity raised instantaneous loss rates by an order of magnitude or more, but these high rates persisted only briefly. As a result, marked biomass reductions were not apparent a day after the velocity change. Dominance change from filamentous green or bluegreen to diatoms immediately after the increase was reversed within 2 days. Loss rate increases due to solids addition were much smaller than those accompanying velocity increase, but simultaneous velocity elevation and solids addition produced instantaneous loss rates approximately double those with velocity increase alone.3. The experiments demonstrated that an elevation in velocity, above that to which algae were accustomed, led to increased loss rates and temporarily reduced biomass. However, recolonization and growth after biomass reduction were apparently rapid. Substantial export of periphyton following solids addition required erosion of the protective boundary layer accompanied by a velocity increase. These results are applicable to understanding the response of lotic periphytic algae to elevated, turbid storm discharges and similar runoff or high-flow events.4. Areal uptake rates of P by algae growing in the laboratory streams increased with soluble reactive phosphorus (SRP) concentration, up to approximately 15 \ig 1~' in overlying water. They also increased above Correspondence; Dr R. R. Homer. Environmental Engineering and Science Program, Department of Civil Engineering. FX-IO, tJnivcrsity of Washington. Seattle. WA 98195. U.S.A. 215 216 Richard R. Homer el al.35 cm s '. Overall, uptake rate seemed to vary inversely with biomass. The ralio of areal uptake rate/biomass was significantly less where mean biomass was 411 ±6 mg chl a m " compared to 223±17 mg chl a n\~~.5, The results suggested that although nutrient uptake is primarily a surface phenomenon, diffusion to interior cells can also determine the responses of attached communities. Both diffusion and uptake rate were stimulated by increasing nutrient concentration and velocity up to certain levels, but became limited by biofilm thickness and scouring.
Environmental factors associated with the occurrence of toxic cyanobacterial blooms and toxin production were investigated during the summers of 1994 and 1995 in Steilacoom Lake, Washington. A pronounced and prolonged toxic bloom of Microcystis aeruginosa occurred during summer 1994 but not during 1995. Lake characteristics that were associated with the toxic bloom in 1994 were higher total phosphorus, decreased water transparency, high water column stability, high surface water temperature and pH, and decreased lake flushing. Decreased water transparency during 1994 may have been due to significantly lower zooplankton abundance. We hypothesize that this decreased transparency was caused by increased planktivory by higher numbers of coho salmon (Oncorhynchus kisutch) fingerlings during 1994 and (or) inhibition of zooplankton grazing by Microcystis. The success of Microcystis over other cyanobacteria was associated with low nitrogen to phosphorus ratios and low nitrate-nitrogen with sufficient ammonium-nitrogen concentrations. Toxin production (i.e., micrograms of microcystin per gram of plankton biomass) was not constant over the duration of detectable toxicity; hence, no relationship was found between Microcystis abundance and microcystin concentration. However, microcystin concentration was positively correlated with increasing soluble reactive phosphorus concentrations between 1 and 10 µg·L-1, indicating that toxin production may have been limited by phosphorus.
1.A two-season investigation was undertaken to determine the contribution of benthic recruitment to the population development of several spedes of blue-green algae. 2. Gloeotrichia echinulata populations were shown to be heavily subsidized by benthic recruitment, deriving on average 40% of their planktonic coJonies from the benthos. 3. Benthic recruitment of Aphanizomenon flos-aquac, Anabaena flos-aquae and a second Anabaena spedes contributed less than 2% to planktonic increases, while MicrocysHs aeruginosa recruitment was negligible. 4. Phosphorus translocation via migrating G. echinulata accounted for most of the phosphorus (P) in the planktonic colonies, and constituted a significant portion of the internal loading of the lake. 5. Estimated P translocation via Aph. flos-aquae was relatively minor, although there was evidence of luxury uptake in the benthos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.