A direct numerical simulation, based on spectral methods, has been used to compute the time-dependent, axisymmetric viscous flow past a rigid sphere. An investigation has been made for oscillatory flow about a zero mean for different Reynolds numbers and frequencies. The simulation has been verified for steady flow conditions, and for unsteady flow there is excellent agreement with Stokes flow theory at very low Reynolds numbers. At moderate Reynolds numbers, around 20, there is good general agreement with available experimental data for oscillatory motion. Under steady flow conditions no separation occurs at Reynolds number below 20; however in an oscillatory flow a separation bubble forms on the decelerating portion of each cycle at Reynolds numbers well below this. As the flow accelerates again the bubble detaches and decays, while the formation of a new bubble is inhibited till the flow again decelerates. Steady streaming, observed for high frequencies, is also observed at low frequencies due to the flow separation. The contribution of the pressure to the resultant force on the sphere includes a component that is well described by the usual added-mass term even when there is separation. In a companion paper the flow characteristics for constant acceleration or deceleration are reported.
Direct numerical simulations of homogeneous isotropic turbulence are used to investigate the effects of turbulence on the transport of particles in gas flows or bubbles in liquid flows. The inertia associated with the bubbles or the particles leads to locally strong concentrations of these in regions of instantaneously strong vorticity for bubbles or strain-rate for particles. This alters the average settling rates and other processes. If the mass-loading of the dispersed phase is significant a random "turbulent" flow is generated by the particle settling. A simple demonstration of this is given, showing the statistically axisymmetric character of this flow and how it can modify an ambient turbulent flow.
Microbubbles formed by small air bubbles in water are characterized as spherical inclusions that are essentially rigid due to the effects of surfactants, and respond to the action of drag forces and added-mass effects from the motion relative to the surrounding fluid. Direct numerical simulations of homogeneous, isotropic turbulence are used to study the effects of the small-scale, dissipation range turbulence on microbubble transport and in particular the average rise velocity of microbubbles. It is found that microbubbles rise significantly more slowly than in still fluid even in the absence of a mean flow, due to a strong interaction with the small-scale vorticity. The way in which microbubbles might modify the underlying turbulence by the variations in their local distribution is discussed for dilute, dispersed systems and some estimates for the enhanced viscous dissipation given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.