We investigated the basic geological and petrophysical properties of the multimodal pore systems in the Arab D limestone facies in Ghawar field, Saudi Arabia. The study used more than 500 mercury injection capillary pressure (MICP) data, which were type-curve matched using Thomeer Hyperbolas. The new MICP sample data were drawn from 10 cored wells that transect the Ghawar field from north to south and from a previous fieldwide study with 125 MICP samples. These 500 samples have a very rich statistical foundation in that they were selected using only random decimation within each of the facies from more than 3,500 core plugs all with assigned facies. In addition to MICP data and facies, a former, smaller sample set had both facies and Dunham texture codes. A new view of these pore systems emerged, that is built upon the intrinsic, fundamental and separate maximum pore-throat diameter modal elements named porositons. Porositons are stable, recurring and intrinsic modes in the maximum pore-throat diameter of the carbonate pore systems. Analytical results derived from the MICP data showed that the pore systems of the Arab D limestones can be classified based on porositons. The benefits of this new classification are demonstrated by considering in detail the relationships to geological facies, well-log responses, permeability modeling and simple nuclear magnetic resonance (NMR) well-log response. By analogy to the decoding of the Egyptian hieroglyphics using the Rosetta Stone, the use of porositons enables strong connections to be made between the geological facies, petrophysical and reservoir-flow properties of these complex carbonate rocks. The relationships between the new pore systems categories and the facies were thoroughly tested using north-south field trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.