Tropical cyclone (TC) risk assessment models and probabilistic forecasting systems rely on large ensembles to simulate the track trajectories, intensities, and spatial distributions of damaging winds from severe events. Given computational constraints associated with the generation of such ensembles, the representation of TC winds is typically based on very simple parametric formulations. Such models strongly underestimate the full range of TC wind field variability and thus do not allow for accurate representation of the risk profile. With this in mind, this study explores the potential of machine learning algorithms as an alternative to current parametric methods. First, a catalog of high-resolution TC wind simulations is assembled for the western North Pacific using the Weather Research and Forecasting (WRF) Model. The simulated wind fields are then decomposed via principal component analysis (PCA) and a quantile regression forest model is trained to predict the conditional distributions of the first three principal component (PC) weights. With this model, predictions can be made for any quantiles in the distributions of the PC weights thereby providing a way to account for uncertainty in the modeled wind fields. By repeatedly sampling the quantile values, probabilistic maps for the likelihood of attaining given wind speed thresholds can be easily generated. Similarly the inclusion of such a model as part of a TC risk assessment framework can greatly increase the range of wind field patterns sampled, providing a broader view of the threat posed by TC winds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.