Hollow polymer nanocapsules are produced by the polymerization within hydrophobic interior of lipid bilayers that act as temporary self-assembled scaffolds. Pore-forming templates are codissolved with monomers in the bilayers to create pores with controlled size and chemical environment. Polymerization was monitored with UV spectroscopy and dynamic light scattering. High resolution magic angle spinning NMR characterization provided detailed structural information about nanocapsules. Spherical shape was confirmed by electron microscopy. Mediumsized molecules can be entrapped within porous nanocapsules. No release of encapsulated molecules was observed within 240 days.
Changing polystyrene nanoparticles from threedimensional spherical shape to two-dimensional disk shape promotes their cell surface binding with significant reduction of cell uptake. As a result of lower cell uptake, nanodisks show very little perturbations on cell functions such as cellular ROS generation, apoptosis and cell cycle progression compared to nanospheres. Therefore, disk-shaped nanoparticles may be a promising template for developing cell membrane-specific and safer imaging agents for a range of biomedical applications such as molecular imaging, tissue engineering, cell tracking, and stem cell separation.
Nanometre-thin membranes, prepared by directed assembly within lipid bilayers, are capable of unhindered transport of ions while being impermeable to medium sized molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.