The characteristics of goal-directed actions tend to resemble those of previously executed actions, but it is unclear whether such effects depend strictly on action history, or also reflect context-dependent processes related to predictive motor planning. Here we manipulated the time available to initiate movements after a target was specified, and studied the effects of predictable movement sequences, to systematically dissociate effects of the most recently executed movement from the movement required next. We found that directional biases due to recent movement history strongly depend upon movement preparation time, suggesting an important contribution from predictive planning. However predictive biases co-exist with an independent source of bias that depends only on recent movement history. The results indicate that past experience influences movement execution through a combination of temporally-stable processes that are strictly use-dependent, and dynamically-evolving and context-dependent processes that reflect prediction of future actions.
Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs.
Humans can learn to make accurate movements when the required map between vision and motor commands changes, but can visuomotor maps obtained through experience with one limb benefit the other? Complete transfer would require new maps to be both fully compatible and accessible between limbs. However, when this question is addressed by providing subjects with rotated visual feedback during reaching, transfer is rarely apparent in the first few trials with the unpracticed limb and is sometimes absent altogether. Partial transfer might be explained by limited accessibility to remapped brain circuits, since critical visuomotor transformations mediating unilateral movements appear to be lateralized. Alternatively, if adaptation involves movement representations associated with both extrinsic (i.e., direction of motion in space) and intrinsic (i.e., joint or muscle based) frames of reference, new visuomotor maps might be incompatible with opposite limb use when visual distortions have opposite effects for the two limbs in intrinsic coordinates. Here we addressed this issue when subjects performed an isometric aiming task with the index finger. We manipulated the alignment of visuomotor distortion for the two hands in different reference frames by altering body posture relative to the orientation of the finger and the visual display. There was strong, immediate transfer of adaptation between limbs only when visuomotor distortion had identical effects in eye- and joint-based coordinates bilaterally. This implies that new visuomotor maps are encoded in neural circuits associated with both intrinsic and extrinsic movement representations and are available to both limbs.
Studies on generalization of learned visuomotor perturbations have generally focused on whether learning is coded in extrinsic or intrinsic reference frames. This dichotomy, however, is challenged by recent findings showing that learning is represented in a mixed reference frame. Overlooked in this framework is how learning appears to consist of multiple processes, such as explicit reaiming and implicit motor adaptation. Therefore, the proposed mixed representation may simply reflect the superposition of explicit and implicit generalization functions, each represented in different reference frames. Here we characterized the individual generalization functions of explicit and implicit learning in relative isolation to determine whether their combination could predict the overall generalization function when both processes are in operation. We modified the form of feedback in a visuomotor rotation task in an attempt to isolate explicit and implicit learning and tested generalization across new limb postures to dissociate the extrinsic/intrinsic representations. We found that the amplitude of explicit generalization was reduced with postural change and was only marginally shifted, resembling an extrinsic representation. In contrast, implicit generalization maintained its amplitude but was significantly shifted, resembling a mixed representation. A linear combination of individual explicit and implicit generalization functions accounted for nearly 85% of the variance associated with the generalization function in a typical visuomotor rotation task, where both processes are in operation. This suggests that each form of learning results from a mixed representation with distinct extrinsic and intrinsic contributions and the combination of these features shapes the generalization pattern observed at novel limb postures. NEW & NOTEWORTHY Generalization following learning in visuomotor adaptation tasks can reflect how the brain represents what it learns. In this study, we isolated explicit and implicit forms of learning and showed that they are derived from a mixed reference frame representation with distinct extrinsic and intrinsic contributions. Furthermore, we showed that the overall generalization pattern at novel workspaces is due to the superposition of independent generalization effects developed by explicit and implicit learning processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.