Recent advances in structural proteomics call for development of fast and reliable automatic methods for prediction of functional surfaces of proteins with known threedimensional structure, including binding sites for known and unknown protein partners as well as oligomerization interfaces. Despite significant progress the problem is still far from being solved. Most existing methods rely, at least partially, on evolutionary information from multiple sequence alignments projected on protein surface. The common drawback of such methods is their limited applicability to the proteins with a sparse set of sequential homologs, as well as inability to detect interfaces in evolutionary variable regions. In this study, the authors developed an improved method for predicting interfaces from a single protein structure, which is based on local statistical properties of the protein surface derived at the level of atomic groups. The proposed Protein IntErface Recognition (PIER) method achieved the overall precision of 60% at the recall threshold of 50% at the residue level on a diverse benchmark of 490 homodimeric, 62 heterodimeric, and 196 transient interfaces (compared with 25% precision at 50% recall expected from random residue function assignment). For 70% of proteins in the benchmark, the binding patch residues were successfully detected with precision exceeding 50% at 50% recall. The calculation only took seconds for an average 300-residue protein. The authors demonstrated that adding the evolutionary conservation signal only marginally influenced the overall prediction performance on the benchmark; moreover, for certain classes of proteins, using this signal actually resulted in a deteriorated prediction. Thorough benchmarking using other datasets from literature showed that PIER yielded improved performance as compared with several alignment-free or alignmentdependent predictions. The accuracy, efficiency, and dependence on structure alone make PIER a suitable tool for automated high-throughput annotation of protein structures emerging from structural proteomics projects. Proteins 2007;67: 400-417. V V C 2007 Wiley-Liss, Inc.
The function of a protein is determined by its intrinsic activity in the context of its subcellular distribution. Membranes localize proteins within cellular compartments and govern their specific activities. Discovering such membrane-protein interactions is important for understanding biological mechanisms, and could uncover novel sites for therapeutic intervention. Here we present a method for detecting membrane interactive proteins and their exposed residues that insert into lipid bilayers. Although the development process involved analysis of how C1b, C2, ENTH, FYVE, Gla, pleckstrin homology (PH) and PX domains bind membranes, the resulting Membrane Optimal Docking Area (MODA) method yields predictions for a given protein of known three dimensional structures without referring to canonical membrane-targeting modules. This approach was tested on the Arf1 GTPase, ATF2 acetyltransferase, von Willebrand factor A3 domain and Neisseria gonorrhoeae MsrB protein, and further refined with membrane interactive and non-interactive FAPP1 and PKD1 pleckstrin homology domains, respectively. Furthermore we demonstrate how this tool can be used to discover unprecedented membrane binding functions as illustrated by the Bro1 domain of Alix, which was revealed to recognize lysobisphosphatidic acid (LBPA). Validation of novel membrane-protein interactions relies on other techniques such as nuclear magnetic resonance spectroscopy (NMR) which was used here to map the sites of micelle interaction. Together this indicates that genome-wide identification of known and novel membrane interactive proteins and sites is now feasible, and provides a new tool for functional annotation of the proteome.
Essential for viral replication and highly conserved among poxviridae, the vaccinia virus I7L ubiquitin-like proteinase (ULP) is an attractive target for development of smallpox antiviral drugs. At the same time, the I7L proteinase exemplifies several interesting challenges from the rational drug design perspective. In the absence of a published I7L X-ray structure, we have built a detailed 3D model of the I7L ligand binding site (S2-S2 0 pocket) based on exceptionally high structural conservation of this site in proteases of the ULP family. The accuracy and limitations of this model were assessed through comparative analysis of available X-ray structures of ULPs, as well as energy based conformational modeling. The 3D model of the I7L ligand binding site was used to perform covalent docking and VLS of a comprehensive library of about 230,000 available ketone and aldehyde compounds. Out of 456 predicted ligands, 97 inhibitors of I7L proteinase activity were confirmed in biochemical assays (*20% overall hit rate). These experimental results both validate our I7L ligand binding model and provide initial leads for rational optimization of poxvirus I7L proteinase inhibitors. Thus, fragments predicted to bind in the prime portion of the active site can be combined with fragments on non-prime side to yield compounds with improved activity and specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.