Branching morphogenesis is a key process in the formation of vascular networks. To date, little is known regarding the molecular events regulating this process. We investigated the involvement of synectin in this process. In zebrafish embryos, synectin knockdown resulted in a hypoplastic dorsal aorta and hypobranched, stunted, and thin intersomitic vessels due to impaired migration and proliferation of angioblasts and arterial endothelial cells while not affecting venous development. Synectin(-/-) mice demonstrated decreased body and organ size, reduced numbers of arteries, and an altered pattern of arterial branching in multiple vascular beds while the venous system remained normal. Murine synectin(-/-) primary arterial, but not venous, endothelial cells showed decreased in vitro tube formation, migration, and proliferation and impaired polarization due to abnormal localization of activated Rac1. We conclude that synectin is involved in selective regulation of arterial, but not venous, growth and branching morphogenesis and that Rac1 plays an important role in this process.
Cell-associated proteoglycans provide highly complex and sophisticated systems to control interactions of extracellular cell matrix components and soluble ligands with the cell surface. Syndecans, a conserved family of heparan- and chondroitin-sulfate carrying transmembrane proteins, are emerging as central players in these interactions. Recent studies have demonstrated the essential role of syndecans in modulating cellular signaling in embryonic development, tumorigenesis, and angiogenesis. In this review, we focus on new advances in our understanding of syndecan-mediated cell signaling.
The cyclical protrusion and retraction of the leading edge is a hallmark of many migrating cells involved in processes such as development, inflammation, and tumorigenesis. The molecular identity of signaling mechanisms that control these cycles has remained unknown. Here, we used live cell imaging of biosensors to monitor spontaneous morphodynamic and signaling activities, and employed correlative image analysis to examine the role of cAMP-activated Protein Kinase A (PKA) in protrusion regulation. PKA activity at the leading edge is closely synchronized with rapid protrusion and with the activity of RhoA. Ensuing PKA phosphorylation of RhoA and the resulting increased interaction between RhoA and RhoGDI establishes a negative feedback that controls the cycling of RhoA activity at the leading edge. Thus, cooperation between PKA, RhoA, and a RhoGDI forms a pacemaker that governs the morphodynamic behavior of migrating cells.
PV1 is an endothelial-specific integral membrane glycoprotein associated with the stomatal diaphragms of caveolae, transendothelial channels, and vesiculo-vacuolar organelles and the diaphragms of endothelial fenestrae. Multiple PV1 homodimers are found within each stomatal and fenestral diaphragm. We investigated the function of PV1 within these diaphragms and their regulation and found that treatment of endothelial cells in culture with phorbol myristate acetate (PMA) led to upregulation of PV1. This correlated with de novo formation of stomatal diaphragms of caveolae and transendothelial channels as well as fenestrae upon PMA treatment. The newly formed diaphragms could be labeled with anti-PV1 antibodies. The upregulation of PV1 and formation of stomatal and fenestral diaphragms by PMA was endothelium specific and was the highest in microvascular endothelial cells compared with their large vessel counterparts. By using a siRNA approach, PV1 mRNA silencing prevented the de novo formation of the diaphragms of caveolae as well as fenestrae and transendothelial channels. Overexpression of PV1 in endothelial cells as well as in cell types that do not harbor caveolar diaphragms in situ induced de novo formation of caveolar stomatal diaphragms. Lastly, PV1 upregulation by PMA required the activation of Erk1/2 MAP kinase pathway and was protein kinase C independent. Taken together, these data show that PV1 is a key structural component, necessary for the biogenesis of the stomatal and fenestral diaphragms.
cAMP-dependent protein kinase A (PKA) is important in processes requiring localized cell protrusion, such as cell migration and axonal path finding. Here, we used a membrane-targeted PKA biosensor to reveal activation of PKA at the leading edge of migrating cells. Previous studies show that PKA activity promotes protrusion and efficient cell migration. In live migrating cells, membrane-associated PKA activity was highest at the leading edge and required ligation of integrins such as alpha4beta1 or alpha5beta1 and an intact actin cytoskeleton. alpha4 integrins are type I PKA-specific A-kinase anchoring proteins, and we now find that type I PKA is important for localization of alpha4beta1 integrin-mediated PKA activation at the leading edge. Accumulation of 3' phosphorylated phosphoinositides [PtdIns(3,4,5)P(3)] products of phosphatidylinositol 3-kinase (PI3-kinase) is an early event in establishing the directionality of migration; however, polarized PKA activation did not require PI3-kinase activity. Conversely, inhibition of PKA blocked accumulation of a PtdIns(3,4,5)P(3)-binding protein, the AKT-pleckstrin homology (PH) domain, at the leading edge; hence, PKA is involved in maintaining cell polarity during migration. In sum, we have visualized compartment-specific PKA activation in migrating cells and used it to reveal that adhesion-mediated localized activation of PKA is an early step in directional cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.