Highly efficient DNA synthesis without template and primer DNAs occurs when N.BspD6I DNA nickase is added to a reaction mixture containing deoxynucleoside triphosphates and the large fragment of Bst DNA polymerase. Over a period of 2 h, virtually all the deoxynucleoside triphosphates (dNTPs) become incorporated into DNA. Inactivation of N.BspD6I nickase by heating inhibits DNA synthesis. Optimal N.BspD6I activity is required to achieve high yields of synthesized DNA. Electron microscopy data revealed that the majority of DNA molecules have a branched structure. Cloning and sequencing of the fragments synthesized demonstrated that the DNA product mainly consists of multiple hexanucleotide non-palindromic tandem repeats containing nickase recognition sites. A possible mechanism is discussed that addresses template-independent DNA synthesis stimulated by N.BspD6I nickase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.