Melanoma is a dangerous form of skin cancer derived from the malignant transformation of melanocytes. The transcription factor SOX2 is not expressed in melanocytes, however, it has been shown to be differentially expressed between benign nevi and malignant melanomas and to be essential for melanoma stem cell maintenance and expansion in vitro and in xenograft models. By using a mouse model in which BRaf mutation cooperates with Pten loss to induce the development of metastatic melanoma, we investigated if Sox2 is required during the process of melanomagenesis, melanoma growth and metastasis and in the acquisition of resistance to BRAF inhibitors (BRAFi) treatments. We found that deletion of Sox2 specifically in Pten null and BRafV600E-expressing melanocytes did not prevent tumor formation and did not modify the temporal kinetics of melanoma occurrence compared to Sox2 wt mice. In addition, tumor growth was similar between Sox2 wt and Sox2 deleted (del) melanomas. By querying publicly available databases, we did not find statistically significant differences in SOX2 expression levels between benign nevi and melanomas, and analysis on two melanoma patient cohorts confirmed that Sox2 levels did not significantly change between primary and metastatic melanomas. Melanoma cell lines derived from both Sox2 genotypes showed a similar sensitivity to vemurafenib treatment and the same ability to develop vemurafenib resistance in long-term cultures. Development of vemurafenib resistance was not dependent on SOX2 expression also in human melanoma cell lines in vitro. Our findings exclude an oncogenic function for Sox2 during melanoma development and do not support a role for this transcription factor in the acquisition of resistance to BRAFi treatments.
In the search of small molecules that can target MDM2/p53 pathway in testicular germ cell tumors (TGCTs), we identified sempervirine (2,3,4,13-tetrahydro-1H-benz[g]indolo[2,3-a]quinolizin-6-ium), an alkaloid of Gelsemium sempervirens, that has been previously proposed as an inhibitor of MDM2 that targets p53-wildtype (wt) tumor cells. We found that sempervirine not only affects cell growth of p53-wt cancer cells, but it is also active in p53-mutated and p53-null cells by triggering p53-dependent and independent pathways without affecting non-transformed cells. To understand which mechanism/s could be activated both in p53-wt and -null cells, we found that sempervirine induced nucleolar remodeling and nucleolar stress by reducing protein stability of RPA194, the catalytic subunit of RNA polymerase I, that led to rRNA synthesis inhibition and to MDM2 block. As shown for other cancer cell models, MDM2 inhibition by nucleolar stress downregulated E2F1 protein levels both in p53-wt and p53-null TGCT cells with the concomitant upregulation of unphosphorylated pRb. Finally, we show that sempervirine is able to enter the nucleus and accumulates within the nucleolus where it binds rRNA without causing DNA damage. Our results identify semperivirine as a novel rRNA synthesis inhibitor and indicate this drug as a non-genotoxic anticancer small molecule.
Vascular tree development depends on the timely differentiation of endothelial and vascular smooth muscle cells. These latter are key players in the formation of the vascular scaffold that offers resistance to the blood flow. This review aims at providing an overview on the role of PDE5, the cGMP-specific phosphodiesterase that historically attracted much attention for its involvement in male impotence, in the regulation of vascular smooth muscle cell function. The overall goal is to underscore the importance of PDE5 expression and activity in this cell type in the context of the organs where its function has been extensively studied.
Germ cell tumors (GCTs) are rare tumors that can develop in both sexes, peaking in adolescents. To understand the mechanisms that underlie germ cell transformation, we established a GCT mouse model carrying germ cell-specific BRafV600E mutation with or without heterozygous Pten deletion. Both male and female mice developed monolateral teratocarcinomas containing embryonal carcinoma (EC) cells that showed an aggressive phenotype and metastatic ability. Germ cell transformation started in fetal gonads and progressed after birth leading to gonadal invasion. Early postnatal testes showed foci of tumor transformation, while ovaries showed increased number of follicles, multi-ovular follicles (MOFs) and scattered metaphase I oocytes containing follicles. Our results indicate that Mapk over-activation in fetal germ cells of both sexes can expand their proliferative window leading to neoplastic transformation and metastatic behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.