The p53 tumor suppressor protein is a transcription factor that plays a major role in the DNA damage response. After DNA damage, p53 levels increase due primarily to stabilization of the protein. The molecular mechanisms leading to stabilization of p53 after DNA damage have not been completely elucidated. Recently we reported that cisplatin treatment activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) and that inhibition of ERK1/2 resulted in enhanced sensitivity to cisplatin. In the present study, we examined the potential role of ERK1/2 activation in regulation of the p53 response to cisplatin. In the ovarian carcinoma cell line A2780, inhibition of ERK1/2 activation with the mitogenactivated protein kinase/ERK kinase 1 (MEK1) inhibitor PD98059 resulted in decreased p53 protein half-life and diminished accumulation of p53 protein during exposure to cisplatin. We also demonstrated that p53 protein co-immunoprecipitated with ERK1/2 protein and was phosphorylated by activated recombinant murine ERK2 in vitro. Furthermore, PD98059 decreased the phosphorylation of p53 at serine 15 during cisplatin exposure, suggesting that ERK1/2 mediates in part phosphorylation of p53 during the cisplatin DNA response. These results strongly suggest that cisplatin-induced ERK activation is an up-stream regulator of the p53 response to DNA damage caused by cisplatin.
Curative cancer treatment regimens often require cranial irradiation, resulting in lifelong neurocognitive deficiency in cancer survivors. This deficiency is in part related to radiation-induced apoptosis and decreased neurogenesis in the subgranular zone of the hippocampus. We show that lithium treatment protects irradiated hippocampal neurons from apoptosis and improves cognitive performance of irradiated mice. The molecular mechanism of this effect is mediated through multiple pathways, including Akt/glycogen synthase kinase-3B (GSK-3B) and Bcl-2/Bax. Lithium treatment of the cultured mouse hippocampal neurons HT-22 induced activation of Akt (1.5-fold), inhibition of GSK-3B (2.2-fold), and an increase in Bcl-2 protein expression (2-fold). These effects were sustained when cells were treated with lithium in combination with ionizing radiation. In addition, this combined treatment led to decreased expression (40%) of the apoptotic protein Bax. The additional genes regulated by lithium were identified by microarray, such as decorin and Birc1f. In summary, we propose lithium treatment as a novel therapy for prevention of deleterious neurocognitive consequences of cranial irradiation. (Cancer Res 2006; 66(23): 11179-86)
There are now more than 10 million cancer survivors in the United States. With these numbers, chronic sequelae that result from cancer therapy have become a major health care problem. Although radiation therapy of the brain has improved cancer cure rates, learning disorders and memory deficits are a common consequence of this therapy. Here we show that glycogen synthase kinase 3B (GSK-3B) is required for radiation-induced hippocampal neuronal apoptosis and subsequent neurocognitive decline. Inhibition of GSK-3B either by small molecules (SB216763 or SB415286) or by ectopic expression of kinase-inactive GSK-3B before irradiation significantly attenuated radiation-induced apoptosis in hippocampal neurons. GSK-3B inhibition with SB216763 or SB415286 also decreased apoptosis in the subgranular zone of the hippocampus in irradiated mice, leading to improved cognitive function in irradiated animals. Studies of the molecular mechanisms of the cytoprotective effect showed that GSK-3B activity in hippocampal neurons was not significantly altered by radiation, pointing to the indirect involvement of this enzyme in radiation-induced apoptosis. At the same time, radiation led to increased accumulation of p53, whereas inhibition of the basal level of GSK-3B activity before radiation prevented p53 accumulation, suggesting a possible mechanism of cytoprotection by GSK-3B inhibitors. These findings identify GSK-3B signaling as a key regulator of radiationinduced damage in hippocampal neurons and suggest that GSK-3B inhibitors may have a therapeutic role in protecting both pediatric and adult cancer patients and may help to improve quality of life in cancer survivors. [Cancer Res 2008;68(14):5859-68]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.