Anorexia nervosa (AN) commonly arises during adolescence leading to interruptions of somatic and psychological development as well as to atrophic brain changes. It remains unclear whether these brain changes are related to the loss of neurons, glia, neuropil or merely due to fluid shifts. We determined leptin levels and two brain-derived damage markers: glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE) of 43 acute AN patients and 50 healthy control woman (HCW). Peripheral GFAP and NSE concentrations of AN patients were not elevated and not different from HCW. Subjects with particularly low leptin concentration, indicating severe malnutrition, did not show abnormal values either. During weight recovery the marker proteins remained unchanged. Our preliminary results are in line with neuroimaging studies supporting the reversibility of brain changes in AN and do not substantiate hypotheses relying on the extensive damage of brain cells as an explanation for cerebral atrophy in AN.
Normal weight and normal leptin levels but lower availability of TRP and PHEN in recAN patients might indicate that outside a tightly controlled setting these patients still engage in abnormal eating patterns. Reduced peripheral availability of these precursor amino acids could impact on 5-HT and catecholamine functioning in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.