In the search of strategies of presentation of heterologous antigens to elicit humoral or cellular immune responses that modulate and properly potentiate each type of response, researchers have been studying baculovirus (BV) as vaccine vectors with promising results. For some years, several research groups explored different antigen presentation approaches using the BV AcNPV by expressing polypeptides on the surface of budded virions or by de novo synthesis of heterologous antigens by transduction of mammalian cells. In the case of expression on the surface of budded virions, for example, researchers have expressed polypeptides in peplomers as GP64 glycoprotein fusions or distributed throughout the entire surface by fusions to portions of the G protein of vesicular stomatitis virus, VSV. Recently, our group developed the strategy of cross-presentation of antigens by fusions of GP64 to the capsid protein VP39 (capsid display) for the generation of cytotoxic responses. While the different strategies showed to be effective in raising immune responses, the individuality of each analysis makes difficult the comparison of the results. Here, by comparing the different strategies, we show that localization of the model antigen ovalbumin (OVA) strongly determined the quality and intensity of the adaptive response to the heterologous antigen. Furthermore, surface display favored humoral responses, whereas capsid display favored cytotoxic responses. Finally, capsid display showed a much more efficient strategy to activate CD8-mediated responses than transduction. The incorporation of adjuvants in baculovirus formulations dramatically diminished the immunostimulatory properties of baculovirus.
The budded phenotype (BV) of the baculovirus AcMNPV has been demonstrated to have strong immunostimulatory properties that are relevant for the development of vaccines and antiviral therapies. Although the occluded phenotype (ODV) shares the main structural proteins and its genome with BV, it has been poorly studied in mammals. In this study, we assessed the capacity of ODV to induce immune responses in mice. In contrast to BVs, ODVs failed to promote the secretion of IFN-gamma, IL-6 and Il-12 and to induce antiviral activity against VSV in the short term. Furthermore, ODVs were unable to induce cellular immunity against a coadministered antigen 7 days after inoculation. By analyzing the interaction of ODVs with BMDCs, we observed that although ODVs entered the cells reaching late and acidic endosomes, they did not induce their maturation. Finally, we also analyzed if BVs and ODVs followed different routes in the cell during the infection. BVs, but not ODVs, colocalized with the protein ovalbumin in compartments with the presence of proteases. The results suggest that structural differences could be responsible for their different destinies in the dendritic cell and this could lead to a different impact on the immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.