Alzheimer’s disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner -a problem that is best characterized in Alzheimer disease, where it begins pre-symptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by rescuing, protecting or normalizing brain energetics. Approaches described include restoring oxidative phosphorylation and glycolysis, improving insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntington's disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction.Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion mutation in the coding region of a novel gene. The mechanism of HD is unknown. However, most data suggest that polyglutamine-mediated aggregation contributes to the pathology (32). Studies of human brain (14), mouse models (48), and cells (8, 28) demonstrate that mutant huntingtin (mhtt) binds and sequesters its normal counterpart as well as many cellular proteins (41). But whether pathophysiology results from a loss of normal function or a gain of a new function in adult neurons is not well understood.A major gap in our understanding of the disease mechanism is the absence of a known function for normal huntingtin (htt). Emerging evidence suggests that htt is likely to be a multifunctional protein that can mediate transactions in both the nucleus and the cytoplasm. Transcriptional dysfunction caused by mhtt has been proposed to lead to toxicity. The mutation in full-length htt prevents its normal ability to bind and sequester a repressor of brain-derived neurotrophic factor expression, reducing the availability of brain-derived neurotrophic factor to striatal neurons (54). The N-terminal, truncated form of mhtt can bind to and interfere with nuclear factors such as CREB (51), CREB binding protein (30, 39), corepressor (22), and transcriptional activator Sp1 (12,23).Cytoplasmic dysfunction has also been implicated as a toxic mechanism. Recently, novel data obtained with Drosophila (17) and isolated squid axoplasm (42) have provided direct evidence that htt is an essential protein involved in fast axonal trafficking. Additionally, these data demonstrate that the mutation in htt causes trafficking abnormalities. Reduction of htt expression in Drosophila caused axonal transport defects in larval nerves and the same neurodegenerative phenotype in adult eyes as expression of mutant dynein or p150 Glued (17). In invertebrate models for HD, expression of truncated proteins with an expanded gluta...
Alzheimer’s Disease (AD) currently affects more than 5 million Americans, with numbers expected to grow dramatically as the population ages. The pathophysiological changes in AD patients begin decades before the onset of dementia, highlighting the urgent need for the development of early diagnostic methods. Compelling data demonstrate that increased levels of amyloid-beta compromise multiple cellular pathways; thus, the investigation of changes in various cellular networks is essential to advance our understanding of early disease mechanisms and to identify novel therapeutic targets. We applied a liquid chromatography/mass spectrometry-based non-targeted metabolomics approach to determine global metabolic changes in plasma and cerebrospinal fluid (CSF) from the same individuals with different AD severity. Metabolic profiling detected a total of significantly altered 342 plasma and 351 CSF metabolites, of which 22% were identified. Based on the changes of >150 metabolites, we found 23 altered canonical pathways in plasma and 20 in CSF in mild cognitive impairment (MCI) vs. cognitively normal (CN) individuals with a false discovery rate <0.05. The number of affected pathways increased with disease severity in both fluids. Lysine metabolism in plasma and the Krebs cycle in CSF were significantly affected in MCI vs. CN. Cholesterol and sphingolipids transport was altered in both CSF and plasma of AD vs. CN. Other 30 canonical pathways significantly disturbed in MCI and AD patients included energy metabolism, Krebs cycle, mitochondrial function, neurotransmitter and amino acid metabolism, and lipid biosynthesis. Pathways in plasma that discriminated between all groups included polyamine, lysine, tryptophan metabolism, and aminoacyl-tRNA biosynthesis; and in CSF involved cortisone and prostaglandin 2 biosynthesis and metabolism. Our data suggest metabolomics could advance our understanding of the early disease mechanisms shared in progression from CN to MCI and to AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.