The phenylbenzothiazole compounds show antitumor properties and are highly selective. In this paper, the (99)Tc chemical shifts based on the ((99m)Tc)(CO)3 (NNO) complex conjugated to the antitumor agent 2-(4'-aminophenyl)benzothiazole are reported. Thermal and solvent effects were studied computationally by quantum-chemical methods, using the density functional theory (DFT) (DFT level BPW91/aug-cc-pVTZ for the Tc and BPW91/IGLO-II for the other atoms) to compute the NMR parameters for the complex. We have calculated the (99)Tc NMR chemical shifts of the complex in gas phase and solution using different solvation models (polarizable continuum model and explicit solvation). To evaluate the thermal effect, molecular dynamics simulations were carried, using the atom-centered density matrix propagation method at the DFT level (BP86/LanL2dz). The results highlight that the (99)Tc NMR spectroscopy can be a promising technique for structural investigation of biomolecules, at the molecular level, in different environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.