No abstract
Background: The COVID-19 pandemic has had global effects; cases have been counted in the tens of millions, and there have been over two million deaths throughout the world. Health systems have been stressed in trying to provide a response to the increasing demand for hospital beds during the different waves. This paper analyzes the dynamic response of the hospitals of the Community of Madrid (CoM) during the first wave of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in the period between 18 March and 31 May 2020. The aim was to model the response of the CoM’s health system in terms of the number of available beds. Methods: A research design based on a case study of the CoM was developed. To model this response, we use two concepts: “bed margin” (available beds minus occupied beds, expressed as a percentage) and “flexibility” (which describes the ability to adapt to the growing demand for beds). The Linear Hinges Model allowed a robust estimation of the key performance indicators for capturing the flexibility of the available beds in hospitals. Three new flexibility indicators were defined: the Average Ramp Rate Until the Peak (ARRUP), the Ramp Duration Until the Peak (RDUP), and the Ramp Growth Until the Peak (RGUP). Results: The public and private hospitals of the CoM were able to increase the number of available beds from 18,692 on 18 March 2020 to 23,623 on 2 April 2020. At the peak of the wave, the number of available beds increased by 160 in 48 h, with an occupancy of 90.3%. Within that fifteen-day period, the number of COVID-19 inpatients increased by 200% in non-intensive care unit (non-ICU) wards and by 155% in intensive care unit (ICU) wards. The estimated ARRUP for non-ICU beds in the CoM hospital network during the first pandemic wave was 305.56 beds/day, the RDUP was 15 days, and the RGUP was 4598 beds. For the ICU beds, the ARRUP was 36.73 beds/day, the RDUP was 20 days, and the RGUP was 735 beds. This paper includes a further analysis of the response estimated for each hospital. Conclusions:This research provides insights not only for academia, but also for hospital management and practitioners. The results show that not all of the hospitals dealt with the sudden increase in bed demand in the same way, nor did they provide the same flexibility in order to increase their bed capabilities. The bed margin and the proposed indicators of flexibility summarize the dynamic response and can be included as part of a hospital’s management dashboard for monitoring its behavior during pandemic waves or other health crises as a complement to other, more steady-state indicators.
The deployment of microgrids could be fostered by control systems that do not require very complex modelling, calibration, prediction and/or optimisation processes. This paper explores the application of Reinforcement Learning (RL) techniques for the operation of a microgrid. The implemented Deep Q-Network (DQN) can learn an optimal policy for the operation of the elements of an isolated microgrid, based on the interaction agent-environment when particular operation actions are taken in the microgrid components. In order to facilitate the scaling-up of this solution, the algorithm relies exclusively on historical data from past events, and therefore it does not require forecasts of the demand or the renewable generation. The objective is to minimise the cost of operating the microgrid, including the penalty of non-served power. This paper analyses the effect of considering different definitions for the state of the system by expanding the set of variables that define it. The obtained results are very satisfactory as it can be concluded by their comparison with the perfect-information optimal operation computed with a traditional optimisation model, and with a Naive model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.