Self-driving vehicles have experienced an increase in research interest in the last decades. Nevertheless, fully autonomous vehicles are still far from being a common means of transport. This paper presents the design and experimental validation of a processor-in-the-loop (PIL) architecture for an autonomous sports car. The considered vehicle is an all-wheel drive full-electric single-seater prototype. The retained PIL architecture includes all the modules required for autonomous driving at system level: environment perception, trajectory planning, and control. Specifically, the perception pipeline exploits obstacle detection algorithms based on Artificial Intelligence (AI), and the trajectory planning is based on a modified Rapidly-exploring Random Tree (RRT) algorithm based on Dubins curves, while the vehicle is controlled via a Model Predictive Control (MPC) strategy. The considered PIL layout is implemented firstly using a low-cost card-sized computer for fast code verification purposes. Furthermore, the proposed PIL architecture is compared in terms of performance to an alternative PIL using high-performance real-time target computing machine. Both PIL architectures exploit User Datagram Protocol (UDP) protocol to properly communicate with a personal computer. The latter PIL architecture is validated in real-time using experimental data. Moreover, they are also validated with respect to the general autonomous pipeline that runs in parallel on the personal computer during numerical simulation.
This paper presents a local trajectory planning method based on the Rapidly-exploring Random Tree (RRT) algorithm using Dubins curves for autonomous racing vehicles. The purpose of the investigated method is the real-time computation of a trajectory that could be feasible in autonomous driving. The vehicle is considered as a three Degree-of-Freedom bicycle model and a Model Predictive Control (MPC) algorithm is implemented to control the lateral and longitudinal vehicle dynamics. The trajectory planning algorithm exploits a perception pipeline using a LiDAR sensor that is mounted onto the front wing of the racing vehicle. The MPC computes the acceleration/ deceleration command and the front wheel steering angle to follow the predicted trajectory. The trajectory and control algorithms are tested on real data acquisition performed on-board the vehicle. For validation purposes, the vehicle is driven autonomously during different maneuvers performed in the racing environment that is structured with traffic cones. The feasibility of the algorithm is evaluated in terms of error with respect to the planned trajectory, tracking velocity and maximum longitudinal acceleration. The effectiveness of the method is also evaluated with respect to command signals for the steering and acceleration actuators featured by the retained racing vehicle. The results demonstrate that the trajectory is well-tracked and the signals are compatible with the actuator constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.