Summary The kinematic understanding of the relationship between relative plate motion and the structure of orogenic belts depends upon a knowledge of relative plate motion across the plate boundary system, the relative motion of small blocks and flakes within the system, an evaluation of orogenic body forces, and an understanding of the thermomechanical evolution of the upper part of the orogenic lithosphere in determining strength and detachment levels. We have built a preliminary model for the Cenozoic kinematic evolution of the western Mediterranean oceanic basins and their peripheral orogens that integrates (1) the motion of Africa relative to Europe based upon a new study of Atlantic fracture zones using SEASAT data and the Lamont-Doherty magnetic anomaly database, (2) a new interpretation of the rotation of Corsica/Sardinia and the opening of the Balearic and Tyrrhenian oceanic basins, (3) sedimentary facies sequences in the Apennines, Calabria, and Sicily, and (4) Apennine/Calabrian structure and structural sequence.
A new central Pangaea fit (type A) is proposed for the late Ladinian (230 Ma), together with a plate motions model for the subsequent phases of rifting, continental breakup and initial\ud spreading in the central Atlantic. This model is based on: (1) a reinterpretation of the process of formation of the East Coast Magnetic Anomaly along the eastern margin of North America\ud and the corresponding magnetic anomalies at the conjugate margins of northwest Africa and the Moroccan Meseta; (2) an analysis of major rifting events in the central Atlantic, Atlas and\ud central Mediterranean and (3) a crustal balancing of the stretched margins of North America, Moroccan Meseta and northwest Africa. The process of fragmentation of central Pangaea can be described by three major phases spanning the time interval from the late Ladinian (230 Ma) to the Tithonian (147.7 Ma). During the first phase, from the late Ladinian (230 Ma) to the latest Rhaetian (200 Ma), rifting proceeded along the eastern margin of North America, the northwest African margin and theHigh, Saharan and Tunisian Atlas, determining the formation of a separate Moroccan microplate at the interface between Gondwana and Laurasia. During the second phase, from the latest Rhaetian (200 Ma) to the late Pliensbachian (185 Ma), oceanic crust started forming between the East Coast and Blake Spur magnetic anomalies, whereas the Morrocan Meseta simply continued to rift away from North America. During this time interval, the Atlas rift reached its maximum extent. Finally, the third phase, encompassing the\ud time interval from the late Pliensbachian (185 Ma) to chron M21 (147.7 Ma), was triggered by the northward jump of the main plate boundary connecting the central Atlantic with the Tethys area. Therefore, as soon as rifting in the Atlas zone ceased, plate motion started along complex fault systems between Morocco and Iberia, whereas a rift/drift transition occurred in the northern segment of the central Atlantic, between Morocco and the conjugate margin of Nova Scotia. The inversion of the Atlas rift and the subsequent formation of the Atlas mountain belt occurred during the Oligocene–early Miocene time interval. In the central Atlantic, this event was associated with higher spreading rates of the ridge segments north of the Atlantis FZ. An estimate of 170 km of dextral offset of Morocco relative to northwest Africa, in the\ud central Atlantic, is required by an analysis of marine magnetic anomalies. Five plate tectonic reconstructions and a computer animation are proposed to illustrate the late Triassic and\ud Jurassic process of breakup of Pangaea in the central Atlantic and Atlas regions
S U M M A R YThe tectonic history of the Western Mediterranean region during the Oligocene and Early Miocene is illustrated through a series of plate reconstructions, from chron C13n to chron C6n. The reconstructions are based on a new interpretation of published magnetic anomaly data and two-ships seismic data, and their integration with known geological constraints, in order to determine style and timing of the backarc extension processes in the Liguro-Provençal, Valencia and Algerian basins. In particular, a reinterpretation of the regional magnetic anomaly field allowed the calculation of the instantaneous Euler poles associated with the motion of 11 microplates relative to Eurasia and Iberia. Furthermore, a quantitative analysis of the acoustic basement morphology and the balancing of deep crustal profiles were used to estimate the closure and pre-rift rotation angles associated with the Euler poles of opening of the Ligurian, Provençal, Valencia and Algerian basins. This rigorous reconstruction of the geometry of the pre-rift continental margins of Iberia and Eurasia could furnish important insights into the study of Mediterranean tectonics for older times.
This paper presents a new southern North Atlantic plate model from Late Cretaceous to present, with the aim of constraining the kinematics of the Iberian plate during the last 83.5 Myr. This model is presented along with a detailed isochron map generated through the analysis of 3 aeromagnetic tracks and ~400 ship tracks from the National Centers for Environmental Information database. We present a new technique to obtain well‐constrained estimates of the Iberia‐North America plate motions from magnetic anomalies, overcoming the scarcity of large‐offset fracture zones and transform faults. We build an integrated kinematic model for NW Africa, Morocco, Iberia, Europe, and North America, which shows that the deformation is partitioned between Pyrenees and Betic‐Rif orogenic domain during the Late Cretaceous‐Oligocene time interval. In the Eastern Betics domain, the calculated amount of NW Africa‐Iberia convergence is ~80 km between 83.5 and 34 Ma, followed by ~150 km since the Oligocene. The motion of Iberia relative to Europe in the Central Pyrenees is characterized by overall NE directed transpressional motion during the Campanian and the Paleocene, followed by NW directed transpressional movement until the Lutetian and overall NNW directed convergence from Bartonian to Chattian. This motion occurs along the axis of the Bay of Biscay from the Santonian–Campanian boundary to the middle Priabonian, subsequently jumping to King's Trough at Anomaly 17 (36.62 Ma).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.