This article presents the results of numerical simulations of seepage through the body of the dam and the reservoir bed. The purpose of this study was to analyse the seepage stability during a flood as well as the impact on seepage stability of the diaphragm wall and gravel columns, on which the dam body is founded in selected segments. Simulations were conducted for three different locations, and the following 3D models of the dum were prepared:
–
a model containing the front and right-bank part of the dam, for which no diaphragm wall, gravel columns and drainage ditch were provided for
–
a model of a segment of the right-bank dam including a diaphragm wall, drainage ditch and gravel columns under the dam (two variants with differing diaphragm wall lengths)
–
a model of the water dam segment accounting for gravel columns and a drainage ditch, but without a diaphragm wall. In the case of founding on gravel columns, the base was modelled as an anisotropic medium in terms of seepage properties, macroscopically equivalent to the actual soil medium.
The numerical model utilises the finite element method. The geometry of the dam and geological substrate was defined in the GIS tools in the form of a 3D model of the terrain and geology of the substrate.
This article presents the results of numerical calculations of soil consolidation underneath the "Africa Pavilion" structure in Wrocław Zoo, Poland. To determine the deformations of the baseplate of the "Africa Pavilion" and deformations of the subsoil, Biot's consolidation theory for two-phase medium was applied. The calculations were carried out using the professional program FlexPDE v.6, which is based on the Finite Element Method. Numerical calculations performed were used to evaluate the design assumptions allowing for the laying of hydraulic conduits under the slab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.