DNP enhanced (1)H NMR at 143 MHz in toluene is investigated using an NMR spectrometer coupled with a modified EPR spectrometer operating at 94 GHz and TEMPOL as the polarisation agent. A 100 W microwave amplifier was incorporated into the output stage of the EPR instrument so that high microwave powers could be delivered to the probe in either CW or pulsed mode. The maximum enhancement for the ring protons increases from approximately -16 for a 5 mM TEMPOL solution to approximately -50 for a 20 mM solution at a microwave power of approximately 480 mW. The temperature dependence of the enhancement, the NMR relaxation rates and the ESR spectrum of TEMPOL were also studied in an effort to obtain information on the dynamics of the system.
It is shown that the temperature dependence of the DNP enhancement of the NMR signal from water protons at 3.4 T using TEMPOL as a polarising agent can be obtained provided that the nuclear relaxation, T(1I), is sufficiently fast and the resolution sufficient to measure the (1)H NMR shift. For high radical concentrations (∼100 mM) the leakage factor is approximately 1 and, provided sufficient microwave power is available, the saturation factor is also approximately 1. In this situation the DNP enhancement is solely a product of the ratio of the electron and nuclear gyromagnetic ratios and the coupling factor enabling the latter to be directly determined. Although the use of high microwave power levels needed to ensure saturation causes rapid heating of the sample, this does not prevent maximum DNP enhancements, ε(0), being obtained since T(1I) is very much less than the characteristic heating time at these concentrations. It is necessary, however, to know the temperature variation of T(1I) to allow accurate modelling of the behaviour. The DNP enhancement is found to vary linearly with temperature with ε(0)(T) = -2 ± 2 - (1.35 ± 0.02)T for 6 °C ≤ T ≤ 100 °C. The value determined for the coupling factor, 0.055 ± 0.003 at 25 °C, agrees very well with the molecular dynamics simulations of Sezer et al. (Phys. Chem. Chem. Phys., 2009, 11, 6626) who calculated 0.0534, however the experimental values increase much more rapidly with increasing temperature than predicted by these simulations. Large DNP enhancements (|ε(0)| > 100) are reported at high temperatures but it is also shown that significant enhancements (e.g.∼40) can be achieved whilst maintaining the sample temperature at 40 °C by adjusting the microwave power and irradiation time. In addition, short polarisation times enable rapid data acquisition which permits further enhancement of the signal, such that useful liquid state DNP-NMR experiments could be carried out on very small samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.