Extracellular ATP has been implicated in a number of cellular events, including mammalian sperm function. The complement of ATP-dependent sperm proteins includes six subunits of the 26S proteasome, a multi-subunit protease specific to ubiquitinated substrate-proteins. Proteolysis of ubiquitinated proteins by the 26S proteasome is necessary for the success of mammalian fertilization, including but not limited to acrosomal exocytosis (AE) and spermzona pellucida (ZP) penetration. The 26S proteasome is uniquely present on the sperm acrosomal surface during mammalian, ascidian, and invertebrate fertilization. The proteasome is a multi-subunit protease complex of B2 MDa composed of the 19S regulatory complex and a 20S proteolytic core. Integrity of the 19S complex is maintained by six 19S ATPase subunits (PSMC1 through PSMC6). Consequently, we hypothesized that fertilization will be blocked by the depletion of sperm-surface associated ATP (ssATP). Depletion of ssATP by the Solanum tuberosum apyrase, a 49 kDa, non-cell permeant enzyme, significantly reduced the ATP content measured by an adapted luminescence-ATP assay from which all permeabilizing agents were excluded. Addition of active apyrase to porcine in vitro fertilization (IVF) medium caused a concentration dependent reduction in the overall fertilization rate. No such outcomes were observed in control groups using heat-inactivated apyrase. Apyrase treatment altered the band pattern of 19S ATPase subunits PSMC1 (Rpt2) and PSMC4 (Rpt3) in Western blotting, suggesting that it had an effect on the integrity of the sperm proteasomal 19S complex. Apyrase only altered the proteasomal core activities slightly, since these activities are not directly dependent on external ATP. In contrast, sperm treatment with MG132, a specific inhibitor of the proteasomal core chymotrypsin-like activity, inhibited the target proteolytic activity, but also induced a compensatory elevation in proteasomal peptidylglutamyl peptide hydrolase activity. Altogether, the present data provide an important missing piece of evidence in support of the ssATP-dependent, proteasomal-proteolytic model of sperm-ZP interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.