This paper focuses on numerical computation and experimental examination of Bernoulli picker, which is the essential module for the 3D stacking process for heterogeneous integration devices, to reveal the fundamental physics of non-contact die handling and to seek optimized design. We estimated the pick-up performance of the Bernoulli picker and the deformation of the die using pseudo-coupling of flow and structural analysis. We simulated the flow field around the target die and picker using the RANS equation with the k-w SST turbulence model to predict the levitation height between the picker surface and target die. Then we estimated the deformation of the die using the inertial relief approach of ABAQUS with computed pressure field information. Based on the numerical investigations, we made a prototype of a Bernoulli picker and conducted experimental measures to verify the feasibility of our design. The measured results indicate that the present numerical approach can be utilized for further optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.