Soil respiration (Rs) has been usually measured during daylight hours using manual chambers. This approach assumes that measurements made during a typical time interval (e.g., 9 to 11 am) represent the mean daily value; locally, this may not always be correct and could result in systematic bias of daily and annual Rs budgets. We propose a simple method, based on the temporal stability concept, to determine the most appropriate time of the day for manual measurements to capture a representative mean daily Rs value. We introduce a correction factor to adjust for biases due to nonoptimally timed sampling. This approach was tested in a semiarid shrubland using 24 hr campaigns using two treatments: trenched plots and plots with shrubs. In general, we found optimum times were at night and potential biases ranged from −29 to + 40% in relation to the 24 hr mean of Rs, especially in trenched plots. The degree of bias varied between treatments and seasons, having a greater influence during the wet season when efflux was high than during the dry season when efflux was low. This study proposes a framework for improving local Rs estimates that informs how to decrease temporal uncertainties in upscaling to the annual total.Soil respiration (Rs) represents the second largest flux within the terrestrial carbon cycle, being surpassed only by gross primary productivity 1 . This flux is estimated to be an order of magnitude greater than the CO 2 input to the atmosphere from anthropogenic fossil fuel combustion 2 . Rs represents a net loss of carbon derived from root respiration and from microbial metabolism of soil carbon 3,4 , the largest carbon pool globally 5 . Rs has complex spatio-temporal biophysical controls that vary on different scales 6 as a consequence of changes in biotic (e.g., photosynthesis 7-10 , microbial community 11 ) and abiotic (e.g., soil temperature 12,13 , soil moisture 14,15 , soil texture 16 ) factors. It is important to recognize that a small change within this pool could represent a significant feedback to the earth system 17 . Thus, sampling schemes and measurement strategies should be discussed to improve reports of Rs at the site level and across the world.Rs is a composite of two main sources, heterotrophic (e.g., microbial metabolism) and autotrophic (root and mycorrhizae respiration) 4 . Partitioning of those sources is commonly done using trenching experiments 18 , where roots are excised and excluded from small plots so that microbial metabolism can be assumed to be the only source of Rs. Understanding the contributions of autotrophic and heterotrophic respiration is important because they may respond differently to temperature, with different temporal correlations on a variety of time scales 19 .Rs has been measured for almost 90 years 20 and commonly has been measured using non-steady-state, manually-initiated portable chambers. Manual measurements have been popular around the world because of their portability, low implementation costs, and fewer power and security issues. Measurements using...
The imminent threat of climate change lies in its potential to disrupt the balance of ecosystems, particularly vulnerable areas such as mountain-top remnant forests. An example of such a fragile ecosystem is the Sierra San Pedro Mártir (SSPM) National Park of Mexico’s Baja California state, where high levels of endemism can be found, and which is home to one of the country’s few populations of the emblematic Jeffrey pine (Pinus jeffreyi). Recent outbreaks of pine-feeding sawfly larvae in SSPM increase the vulnerability of this forest ecosystem, calling for immediate assessments of the severity of this threat. Here, we present a thorough study of the sawfly’s biology and distribution, carrying out molecular and morphology-based identification of the species and creating model-based predictions of the species distribution in the area. The sawfly was found to belong to an undescribed species of the genus Zadiprion (family Diprionidae) with a one-year life-cycle. The distribution of this species appears to be restricted to the SSPM national park and it will probably persist for at least another 50 years, even considering the effects of climate change.
To properly define ecoregions, specific criteria such as geology, climate, or species composition (e.g., the presence of endemic species) must be taken into account to understand distribution patterns and resolve ecological biogeography questions. Since the studies on insects in Baja California are scarce, and no fine-scale ecoregions based on the region’s entomofauna is available, this study was designed to test whether the ecoregions based on vegetation can be used for insects, such as Calliphoridae. Nine collecting sites distributed along five ecoregions were selected, between latitudes 29.6° and 32.0°N. In each site, three baited traps were used to collect blow flies from August 2017 to June 2019 during summer, winter, and spring. A total of 30,307 individuals of blow flies distributed in six genera and 13 species were collected. The most abundant species were Cochliomyia macellaria (Fabricius), Phormia regina (Meigen), and Chrysomya rufifacies (Macquart). The composition of the Calliphoridae community was different between the localities and three general groups have been distinguished, based on the species composition similarity (ANOSIM) results: Gulf-Desert, Mountains, and Pacific-Center. The vegetation-based ecoregions only reflect the blow fly species’ distributions to a certain extent, meaning that care must be taken when undertaking ecological biogeographical studies using regionalization based on organisms other than the focal taxa because vegetation does not always reflect fauna species composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.