This study aims to develop an optimal signal control algorithm for signalized intersections using individual vehicle’s trajectory data under the vehicle-to-infrastructure (V2I) communication environment. The optimal signal control algorithm developed in this study consists of three modules, namely, a phase group length computation module, a split distribution module, and a phase sequence assignment module. A set of analyses using a microscopic simulation model, VISSIM, was conducted for evaluating the effectiveness of the V2I-based optimal signal control algorithm proposed in this study. The analysis results show that the performance of the V2I-based optimal signal control algorithm is superior to the actuated as well as the fixed signal control methods in an isolated intersection and a 2X3 signalized intersection network. In addition, this study investigated the minimum market penetration rate of V2I equipped vehicles for which the V2I-based optimal signal control algorithm is applicable.
Traffic congestion has become common in urban areas worldwide. To solve this problem, the method of searching a solution using artificial intelligence has recently attracted widespread attention because it can solve complex problems such as traffic signal control. This study developed two traffic signal control models using reinforcement learning and a microscopic simulation-based evaluation for an isolated intersection and two coordinated intersections. To develop these models, a deep Q-network (DQN) was used, which is a promising reinforcement learning algorithm. The performance was evaluated by comparing the developed traffic signal control models in this research with the fixed-time signal optimized by Synchro model, which is a traffic signal optimization model. The evaluation showed that the developed traffic signal control model of the isolated intersection was validated, and the coordination of intersections was superior to that of the fixed-time signal control method.
This study was initiated to evaluate the performance of methodologies to estimate the space mean speed(SMS) using the time mean speed(TMS) which was collected from the vehicle detection system(VDS) in expressways. To this end, the methodologies presented in prior studies were firstly summarized. It is very hard to achieve exact SMSs and TMSs due to mechanical and communication errors in the field. Thus, a microscopic traffic simulation model was utilized to evaluated the performance. As a result, the harmonic mean and volume-distance weighted harmonic mean were close to the SMS in the case in which the TMSs of individual vehicles were used. However, when the 30-second-interval aggregated TMS were used, the volume-distance weighted harmonic mean was outstanding. In this study, a radar detector was installed in the Joongbu expressway to collect the SMS. The trajectory of individual vehicles collected from the detector were used to calculate the SMS, which was compared with the estimates using other methodologies selected in this study. As a result, the volume-distance weighted mean was turned out to be close to the SMS. However, as the congestion becomes severe. the deviation between the two speed becomes bigger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.