Three distinct hedgehog (HH) molecules, (sonic, desert, and indian), two HH receptors (PTCH1 and PTCH2), a membrane bound activator (SMO), and downstream three transcription factors (GLI1, GLI2, and GLI3) are the major components of the HH signaling. These signaling molecules were initially identified in Drosophila melanogaster. Later, it has been found that the HH system is highly conserved across species and essential for organogenesis. HH signaling pathways play key roles in the development of the brain, face, skeleton, musculature, lungs, and gastrointestinal tract. While the sonic HH (SHH) pathway plays a major role in the development of the central nervous system, the desert HH (DHH) regulates the development of the gonads, and the indian HH (IHH) acts on the development of bones and joints. There are also overlapping roles among the HH molecules. In addition to the developmental role of HH signaling in embryonic life, the pathways possess vital physiological roles in testes and ovaries during adult life. Disruption of DHH and/or IHH signaling results in ineffective gonadal steroidogenesis and gametogenesis. While DHH regulates the male gonadal functions, ovarian functions are regulated by both DHH and IHH. This review article focuses on the roles of HH signaling in gonadal development and reproductive functions with an emphasis on ovarian functions. We have acknowledged the original research work that initially reported the findings and discussed the subsequent studies that have further analyzed the role of HH signaling in testes and ovaries.
Kisspeptins (KPs) secreted from the hypothalamic KP neurons act on KP receptors (KPRs) in gonadotropin (GPN) releasing hormone (GnRH) neurons to produce GnRH. GnRH acts on pituitary gonadotrophs to induce secretion of GPNs, namely follicle stimulating hormone (FSH) and luteinizing hormone (LH), which are essential for ovarian follicle development, oocyte maturation and ovulation. Thus, hypothalamic KPs regulate oocyte maturation indirectly through GPNs. KPs and KPRs are also expressed in the ovarian follicles across species. Recent studies demonstrated that intraovarian KPs also act directly on the KPRs expressed in oocytes to promote oocyte maturation and ovulation. In this review article, we have summarized published reports on the role of hypothalamic and ovarian KP-signaling in oocyte maturation. Gonadal steroid hormones regulate KP secretion from hypothalamic KP neurons, which in turn induces GPN secretion from the hypothalamic-pituitary (HP) axis. On the other hand, GPNs secreted from the HP axis act on the granulosa cells (GCs) and upregulate the expression of ovarian KPs. While KPs are expressed predominantly in the GCs, the KPRs are in the oocytes. Expression of KPs in the ovaries increases with the progression of the estrous cycle and peaks during the preovulatory GPN surge. Intrafollicular KP levels in the ovaries rise with the advancement of developmental stages. Moreover, loss of KPRs in oocytes in mice leads to failure of oocyte maturation and ovulation similar to that of premature ovarian insufficiency (POI). These findings suggest that GC-derived KPs may act on the KPRs in oocytes during their preovulatory maturation. In addition to the intraovarian role of KP-signaling in oocyte maturation, in vivo, a direct role of KP has been identified during in vitro maturation of sheep, porcine, and rat oocytes. KP-stimulation of rat oocytes, in vitro, resulted in Ca2+ release and activation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1 and 2. In vitro treatment of rat or porcine oocytes with KPs upregulated messenger RNA levels of the factors that favor oocyte maturation. In clinical trials, human KP-54 has also been administered successfully to patients undergoing assisted reproductive technologies (ARTs) for increasing oocyte maturation. Exogenous KPs can induce GPN secretion from hypothalamus; however, the possibility of direct KP action on the oocytes cannot be excluded. Understanding the direct in vivo and in vitro roles of KP-signaling in oocyte maturation will help in developing novel KP-based ARTs.
Two bacterial strains (designated as YSTF-M11T and TSTF-M6T) were isolated from tidal flat sediments of the Yellow Sea, Republic of Korea, and taxonomically characterized. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain YSTF-M11T clusters with the type strains of Roseobacter species and strain TSTF-M6T clusters with the type strains of Loktanella salsilacus , Loktanella fryxellensis and Loktanella atrilutea . Strains YSTF-M11T and TSTF-M6T exhibited 16S rRNA gene sequence similarity values of 97.5–98.9 % and 94.1–97.2 % to the type strains of four Roseobacter species and to the type strains of four Loktanella species, respectively. An UBCG tree based on genomic sequences and a tree based on AAI showed that strains YSTF-M11T and TSTF-M6T form a cluster with the type strains of Roseobacter species and with the type strains of L. salsilacus , L. fryxellensis and L. atrilutea , respectively. The ANI and dDDH values between genomic sequences of strain YSTF-M11T and the type strains of four Roseobacter species and between those of strain TSTF-M6T and the type strains of the three Loktanella species were in ranges of 74.0–75.9 and 18.2–19.7 % and 74.7–75.5 and 18.8–19.3 %, respectively. The DNA G+C contents of strains YSTF-M11T and TSTF-M6T were 60.3 and 61.9 % based on their genomic sequences. Both strains contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. Strains YSTF-M11T and TSTF-M6T were separated from recognized Roseobacter species and L. salsilacus , L. fryxellensis and L. atrilutea , respectively, by their phenotypic properties together with the phylogenetic and genetic distinctiveness. Based on data presented in this study, strains YSTF-M11T (=KACC 21642T =NBRC 115155T) and TSTF-M6T (=KACC 21643T =NBRC 115154T) are considered to represent novel species of the genera Roseobacter and Loktanella , respectively, for which the names Roseobacter insulae sp. nov. and Loktanella gaetbuli sp. nov. are proposed.
A total of 187 lactic acid bacteria were isolated from four types of grains collected in South Korea. The bacterial strains were assigned as members of Levilactobacillus brevis, Latilactobacillus curvatus, Lactiplantibacillus plantarum, Lactococcus taiwanesis, Pediococcus pentosaceus, and Weissella paramesenteroides based on the closest similarity using 16S rRNA gene sequence analysis. The strains belonging to the same species were analyzed using RAPD-PCR, and one or two among strains showing the same band pattern were selected. Finally, 25 representative strains were selected for further functional study. Inhibitory effects of lipid accumulation were observed in the strains tested. Pediococcus pentosaceus K28, Levilactobacillus brevis RP21 and Lactiplantibacillus plantarum RP12 significantly reduced lipid accumulation and decreased expression of six adipogenic marker genes in C3H10T1/2 adipocytes. The three strains survived under strong acidity and bile salt conditions. The three strains showed adhesion to Caco-2 cells similar to a reference strain LGG. The resistance of the three strains to several antibiotics was also assessed. Strains RP12 and K28 were confirmed not to produce harmful enzymes based on API ZYM kit results. Based on these results, strains K28, RP21 and RP12 isolated from grains had the ability to inhibit adipogenesis in adipocytes and potentially be useful as probiotics.
A total of 187 lactic acid bacteria were isolated from four types of grains collected in South Korea. The bacterial strains were assigned as members of Levilactobacillus brevis, Latilactobacillus curvatus, Lactiplantibacillus plantarum, Lactococcus taiwanesis, Pediococcus pentosaceus, and Weissella paramesenteroides based on the closest similarity using 16S rRNA gene sequence analysis. The strains belonging to the same species were analyzed using RAPD-PCR, and one or two among strains showing the same band pattern were selected. Finally, 25 representative strains were selected for further functional study. Inhibitory effects of lipid accumulation were observed in the strains tested. Pediococcus pentosaceus K28, Levilactobacillus brevis RP21 and Lactiplantibacillus plantarum RP12 significantly reduced lipid accumulation and decreased expression of six adipogenic marker genes in C3H10T1/2 adipocytes. The three strains survived under strong acidity and bile salt conditions. The three strains showed adhesion to Caco-2 cells similar to a reference strain LGG. The resistance of the three strains to several antibiotics was also assessed. Strains RP12 and K28 were confirmed not to produce harmful enzymes based on API ZYM kit results. Based on these results, strains K28, RP21 and RP12 isolated from grains had the ability to inhibit adipogenesis in adipocytes and potentially be useful as probiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.