Lb41 was determined probiotic properties and applied to cottage cheese. Lb41 showed high viability (>80%) in artificial gastric (pH 2.5, 0.3% pepsin for 3 h) and bile (0.3% oxgall for 24 h) acids, and adhered strongly to HT-29 cells (7.5% adhesion). It did not produce β-glucuronidase and was resistant to several antibiotics. Lb41 did not inhibit proliferation of normal MRC-5 cells, but showed antiproliferative effects on AGS, HT-29, and LoVo cells, based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. In addition, Lb41 reduced nitric oxide production by macrophages. Cottage cheese containing this strain did not show significant differences in physicochemical properties, but the number of lactic acid bacteria was maintained longer than that in control cheese. These results indicate that Lb41 could potentially be used as a probiotic in foods.
This study investigated the effects of atmospheric dielectric barrier discharge (DBD) plasma (1.1 kV, 43 kHz, 5–30 min, N2: 1.5 L/m) on the reduction of Escherichia coli and Bacillus cereus on dried laver. The reductions of E. coli and B. cereus by 5, 10, 20, and 30 min of DBD plasma were 0.56 and 0.24, 0.61 and 0.66, 0.76 and 1.24, and 1.02 and 1.38 log CFU/g, respectively. The D-value of E. coli and B. cereus was predicted as 29.80 and 20.53 min, respectively, using the Weibull model for E. coli (R2 = 0.95) and first-order kinetics for B. cereus (R2 = 0.94). After DBD plasma 5–30 min treatment, there was no change in pH (6.20–6.21) and this value was higher than the untreated dried laver (6.08). All sensory scores in DBD plasma-treated laver were determined as >6 points. The 30 min of DBD plasma is regarded as a novel intervention for the control of potential hazardous bacteria in dried laver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.