We construct a one-parameter family of Laplacians on the Sierpinski Gasket that are symmetric and self-similar for the 9-map iterated function system obtained by iterating the standard 3-map iterated function system. Our main result is the fact that all these Laplacians satisfy a version of spectral decimation that builds a precise catalog of eigenvalues and eigenfunctions for any choice of the parameter. We give a number of applications of this spectral decimation. We also prove analogous results for fractal Laplacians on the unit Interval, and this yields an analogue of the classical Sturm-Liouville theory for the eigenfunctions of these one-dimensional Laplacians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.