We report a theranostic nanoparticle that can express ultrasound (US) imaging and simultaneous therapeutic functions for cancer treatment. We developed doxorubicin-loaded calcium carbonate (CaCO3) hybrid nanoparticles (DOX-CaCO3-MNPs) through a block copolymer templated in situ mineralization approach. The nanoparticles exhibited strong echogenic signals at tumoral acid pH by producing carbon dioxide (CO2) bubbles and showed excellent echo persistence. In vivo results demonstrated that the DOX-CaCO3-MNPs generated CO2 bubbles at tumor tissues sufficient for echogenic reflectivity under a US field. In contrast, the DOX-CaCO3-MNPs located in the liver or tumor-free subcutaneous area did not generate the CO2 bubbles necessary for US contrast. The DOX-CaCO3-MNPs could also trigger the DOX release simultaneously with CO2 bubble generation at the acidic tumoral environment. The DOX-CaCO3-MNPs displayed effective antitumor therapeutic activity in tumor-bearing mice. The concept described in this work may serve as a useful guide for development of various theranostic nanoparticles for US imaging and therapy of various cancers.
In an effort to better understand the interrelationship of the growth and development pattern of the mandible and condyle, a sequential growth pattern of human mandibles in 38 embryos and 111 fetuses were examined by serial histological sections and soft X-ray views. The basic growth pattern of the mandibular body and condyle appeared in week 7 of fertilization. Histologically, the embryonal mandible originated from primary intramembranous ossification in the fibrous mesenchymal tissue around the Meckel cartilage. From this initial ossification, the ramifying trabecular bones developed forward, backward and upward, to form the symphysis, mandibular body, and coronoid process, respectively. We named this initial ossification site of embryonal mandible as the mandibular primary growth center (MdPGC). During week 8 of fertilization, the trabecular bone of the mandibular body grew rapidly to form muscular attachments to the masseter, temporalis, and pterygoid muscles. The mandible was then rapidly separated from the Meckel cartilage and formed a condyle blastema at the posterior end of linear mandibular trabeculae. The condyle blastema, attached to the upper part of pterygoid muscle, grew backward and upward and concurrent endochondral ossification resulted in the formation of the condyle. From week 14 of fertilization, the growth of conical structure of condyle became apparent on histological and radiological examinations. The mandibular body showed a conspicuous radiating trabecular growth pattern centered at the MdPGC, located around the apical area of deciduous first molar. The condyle growth showed characteristic conical structure and abundant hematopoietic tissue in the marrow. The growth of the proximal end of condyle was also approximated to the MdPGC on radiograms. Taken together, we hypothesized that the MdPGC has an important morphogenetic affect for the development of the human mandible, providing a growth center for the trabecular bone of mandibular body and also indicating the initial growth of endochondral ossification of the condyle.
The long-term effect of magnetically targeted neural stem cells in a rat focal cerebral ischemia model was investigated. In middle cerebral artery occlusion (MCAO) stroke model rats, ferumoxide-labeled human neural stem cells (hNSCs) were injected into the tail vein. MCAO rats were divided into three groups: ischemia only (IO), ischemia with NSC injection (IC), and ischemia with NSC injection and the use of magnet targeting (IM). Four weeks after MCAO and 3 weeks posttransplantation, a greater number of hNSCs were found in ischemic lesion sites in IM rat brain compared with IO and IC animals. In addition, differentiation of hNSCs into neurons or astrocytes and angiogenesis were markedly increased. In IM rats, infarct volume was considerably reduced, and function was significantly improved. The present study indicates that long-term use of magnetic fields may be a useful way to improve the efficacy of targeted migration of stem cells and functional deficits in stem cell-based therapy for ischemic brain injury.
This study was designed to investigate the effects of low-intensity laser therapy (LILT) on periodontal ligament (PDL) remodeling during relapse and retention after the completion of orthodontic movement. The maxillary central incisors (n = 104) of the 52 rats were randomly divided into five groups according to the treatment modality: baseline control group without any intervention (n = 8); relapse group without retainer after tooth movement (n = 24); retention group with fixed retainer after tooth movement (n = 24); lased relapse group without retainer after tooth movement and LILT (n = 24); lased retention group with retainer after tooth movement and LILT (n = 24). LILT was daily performed using a gallium-aluminum-arsenide diode laser in a biostimulation mode: wavelength of 780 nm, continuous waves at 70 mW output power, a preset low intensity of 1.75 W/cm(2) in contact mode, resulting in energy dose of 5 J/cm(2) per irradiation for 3 s. The animals were euthanized on days 1, 3, and 7 after removal of the orthodontic appliance. Real-time RT-PCR was performed for quantitative analysis of matrix metalloproteinases mRNA expression. Immunoreactivities of collagen and tissue inhibitor of metalloproteinase were observed on the compression and tension sides. LILT significantly facilitated the expression of five tested MMP mRNAs in both relapse and retention groups. TIMP-1 immunoreactivity was inhibited by LILT in both groups, whereas Col-I immunoreactivity was increased by LILT only in the retention group. These results indicate that LILT would act differently on the stability after orthodontic treatment according to additional retainer wearing or not. LILT when combined with a retainer on the moved teeth may shorten the retention period by accelerating periodontal remodeling in the new tooth position, whereas, LILT on the moved teeth left without any retainer would rather increase the rate of relapse after treatment.
Bone homeostasis is maintained through the balanced action of bone-forming osteoblasts and bone-resorbing osteoclasts. Under pathological conditions or with age, excessive bone loss is often observed due to increased bone resorption. Since osteoclasts are the primary cells in the body that can resorb bone, molecular understanding of osteoclast fate has important clinical implications. Over the past twenty years, many molecular players that govern osteoclast differentiation during normal development have been identified. However, whether the same molecules regulate bone loss occurring under pathological conditions remains largely unknown. We report here that although ATP6v0d2-deficient (ATP6v0d2 KO) mice exhibit an osteopetrotic phenotype due to inefficient osteoclast maturation, this deficiency fails to protect mice from ovariectomy (OVX)-induced bone loss, a model for post-menopause-associated osteoporosis. Moreover, we show that an OVX-induced increase in the number of colony forming unit-granulocyte/macrophage (CFU-GM) in bone marrow cells and subsequent osteoclast formation in vitro was not affected in the absence of ATP6v0d2. However, even after OVX, formation of large osteoclasts (> 100 μm in * To whom correspondence should be addressed: Yongwon Choi, Rm. 308, BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104. Tel.: 215-746-6404; Fax: 215-573-0888; ychoi3@mail.med.upenn.edu Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript diameter) with actin rings was still reduced in the absence of ATP6v0d2. Taken together, these findings suggest that the critical role of ATP6v0d2 may be limited to the control of bone homeostasis under normal development, and that OVX-induced bone loss is likely to be governed mostly by the increase in osteoclast precursors rather than increased efficiency of osteoclast maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.