Among the main bacteria implicated in the pathology of periodontal disease, Aggregatibacter actinomycetemcomitans (Aa) is well known for causing loss of periodontal attachment and systemic disease. Recent studies have suggested that secreted extracellular RNAs (exRNAs) from several bacteria may be important in periodontitis, although their role is unclear. Emerging evidence indicates that exRNAs circulate in nanosized bilayered and membranous extracellular vesicles (EVs) known as outer membrane vesicles (OMVs) in gram-negative bacteria. In this study, we analyzed the small RNA expression profiles in activated human macrophage-like cells (U937) infected with OMVs from Aa and investigated whether these cells can harbor exRNAs of bacterial origin that have been loaded into the host RNA-induced silencing complex, thus regulating host target transcripts. Our results provide evidence for the cytoplasmic delivery and activity of microbial EV-derived small exRNAs in host gene regulation. The production of TNF-a was promoted by exRNAs via the TLR-8 and NF-kB signaling pathways. Numerous studies have linked periodontal disease to neuroinflammatory diseases but without elucidating specific mechanisms for the connection. We show here that intracardiac injection of Aa OMVs in mice showed successful delivery to the brain after crossing the blood-brain barrier, the exRNA cargos increasing expression of TNF-a in the mouse brain. The current study indicates that host gene regulation by microRNAs originating from OMVs of the periodontal pathogen Aa is a novel mechanism for host gene regulation and that the transfer of OMV exRNAs to the brain may cause neuroinflammatory diseases like Alzheimer's.
Complex regional pain syndrome (CRPS) is a condition associated with neuropathic pain that causes significant impairment of daily activities and functioning. Nuclear factor kappa B (NFκB) is thought to play an important role in the mechanism of CRPS. Recently, exosomes loaded with super-repressor inhibitory kappa B (Exo-srIκB, IκB; inhibitor of NFκB) have been shown to have potential anti-inflammatory effects in various inflammatory disease models. We investigated the therapeutic effect of Exo-srIκB on a rodent model with chronic post-ischemia pain (CPIP), a representative animal model of Type I CRPS. After intraperitoneal injection of a vehicle, Exo-srIκB, and pregabalin, the paw withdrawal threshold (PWT) was evaluated up to 48 h. Administration of Exo-srIκB increased PWT compared to the vehicle and pregabalin, and the relative densities of p-IκB and IκB showed significant changes compared to the vehicle 24 h after Exo-srIκB injection. The levels of several cytokines and chemokines were reduced by the administration of Exo-srIκB in mice with CPIP. In conclusion, our results showed more specifically the role of NFκB in the pathogenesis of CRPS and provided a theoretical background for novel treatment options for CRPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.