A numerical analysis model that can accurately predict the physical characteristics of the actually additive manufactured products can significantly reduce time and costs for experimental builds and tests. Thermal analysis for the metal AM process simulation requires a lot of analysis parameters and conditions. However, their accuracy and reliability are not clear, and the current understanding of their influence on the analysis results is very insufficient. Therefore, in this study, the influence of uncertain analysis parameters on the thermal analysis results is estimated, and a procedure to calibrate these analysis parameters is proposed. By using the thermal analysis results for parameter cases determined by a design of experiments, a regression analysis model is constructed to estimate the sensitivity of the analysis parameters to the thermal analysis results. Additionally, it is used to determine the optimal values of analysis parameters that can produce the thermal analysis results closest to the given reference data from actual builds. By using the melt pool size computed from a numerical model as reference data, the proposed procedure is validated. From this result, it is confirmed that a high-fidelity thermal analysis model that can predict the characteristics of actual builds from minimal experimental builds can be constructed efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.