Inflammation is implicated in ischemic stroke and is involved in abnormal homeostasis. Activation of the immune system leads to breakdown of the blood–brain barrier and, thereby, infiltration of immune cells into the brain. Upon cerebral ischemia, infiltrated macrophages and microglia (resident CNS immune cell) are activated, change their phenotype to M1 or M2 based on the microenvironment, migrate toward damaged tissue, and are involved in repair or damage. Those of M1 phenotype release pro-inflammatory mediators, which are associated with tissue damage, while those of M2 phenotype release anti-inflammatory mediators, which are related to tissue recovery. Moreover, late inflammation continually stimulates immune cell infiltration and leads to brain infarction. Therefore, regulation of M1/M2 phenotypes under persistent inflammatory conditions after cerebral ischemia is important for brain repair. Herein, we focus on apoptosis signal-regulating kinase 1 (ASK1), which is involved in apoptotic cell death, brain infarction, and production of inflammatory mediators after cerebral ischemia. We hypothesized that ASK1 is involved in the polarization of M1/M2 phenotype and the function of microglia and macrophage during the late stage of ischemia/hypoxia. We investigated the effects of ASK1 in mice subjected to middle cerebral artery occlusion and on BV2 microglia and RAW264.7 macrophage cell lines subjected to oxygen-glucose deprivation. Our results showed that ASK1 silencing effectively reduced Iba-1 or CD11b-positive cells in ischemic areas, suppressed pro-inflammatory cytokines, and increased anti-inflammatory mediator levels at 7 days after cerebral ischemia. In cultured microglia and macrophages, ASK1 inhibition, induced by NQDI-1 drug, decreased the expression and release of M1-associated factors and increased those of M2-associated factors after hypoxia/reperfusion (H/R). At the gene level, ASK1 inhibition suppressed M1-associated genes and augmented M2-associated genes. In gap closure assay, ASK1 inhibition reduced the migration rate of microglia and macrophages after H/R. Taken together, our results provide new information that suggests ASK1 controls the polarization of M1/M2 and the function of microglia and macrophage under sustained-inflammatory conditions. Regulation of persistent inflammation via M1/M2 polarization by ASK1 is a novel strategy for repair after ischemic stroke.
Postoperative cognitive dysfunction (POCD) may be driven by transference of the innate immune response to the brain after aseptic surgical damage. Macrophages are key mediators of innate immunity that can display a pro-inflammatory M1 phenotype or an anti-inflammatory M2 phenotype. Erythropoietin (EPO) is a hematopoietic hormone that exerts anti-inflammatory effects by influencing macrophage function. We hypothesized that EPO would prevent POCD by promoting macrophage phenotype switching to the M2 phenotype post-surgery. To evaluate the effects of EPO on POCD and macrophage polarization post-surgery, we administered EPO (5,000 U/kg) with or without an arginase inhibitor (amino-6-boronohexanoic acid, 10 mg/kg) to ICR mice before and after abdominal surgery. Forty-eight hours post-surgery, we assessed memory, synapse function, and macrophage/microglial phenotypes in the spleen and hippocampus. We also investigated M1/M2 phenotypes in RAW264.7 and BV2 cells stimulated with lipopolysaccharide and interferon-γ (M1 inducers) in the presence or absence of EPO. EPO prevented POCD, decreased surgery-related synaptic dysfunction, and attenuated pro-inflammatory cytokine generation in the hippocampus. Moreover, EPO suppressed M1-related genes expression and promoted M2 genes expression in the spleen and hippocampus post-surgery. Furthermore, EPO decreased the proportions of macrophages/microglia expressing an M1 surface marker (CD40) and increased those expressing an M2 surface marker (CD206). Arginase inhibition abolished the beneficial effects of EPO on POCD. In vitro, EPO treatment promoted switching of RAW264.7 and BV2 cells stimulated with M1 inducers to an M2 phenotype. In conclusion, EPO prevents POCD by promoting macrophage phenotype switching toward the M2 phenotype.
Conditions of increased oxidative stress including cerebral ischemia can lead to blood–brain barrier dysfunction via matrix metalloproteinase (MMP). It is known that MMP-9 in particular is released from brain endothelial cells is involved in the neuronal cell death that occurs after cerebral ischemia. In the intracellular signaling network, apoptosis signal-regulating kinase 1 (ASK1) is the main activator of the oxidative stress that is part of the pathogenesis of cerebral ischemia. ASK1 also promotes apoptotic cell death and brain infarction after ischemia and is associated with vascular permeability and the formation of brain edema. However, the relationship between ASK1 and MMP-9 after cerebral ischemia remains unknown. Therefore, the aim of the present study was to determine whether blocking ASK1 would affect MMP-9 activity in the ischemic brain and cultured brain endothelial cells. Our results showed that ASK1 inhibition efficiently reduced MMP-9 activity in vivo and in vitro. In endothelial cell cultures, ASK1 inhibition upregulated phosphatidylinositol 3-kinase/Akt/nuclear factor erythroid 2 [NF-E2]-related factor 2/heme oxygenase-1 signals and downregulated cyclooxygenase-2 signals after hypoxia/reperfusion. Additionally, in neuronal cell cultures, cell death occurred when neurons were incubated with endothelial cell-conditioned medium (EC-CM) obtained from the hypoxia/reperfusion group. However, after incubation with EC-CM and following treatment with the ASK1 inhibitor NQDI-1, neuronal cell death was efficiently decreased. We conclude that suppressing ASK1 decreases MMP-9 activity in brain endothelial cells, and leads to decreased neuronal cell death after ischemic injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.