We report on the light-emitting color barcode nanowires (LECB-NWs), which were fabricated by alternating the electrochemical polymerization of light-emitting polymers with various luminescence colors and efficiencies. The nanoscale photoluminescence characteristics of LECB-NWs were investigated using a laser confocal microscope with a high spatial resolution. The alternating light emissions of the LECB-NWs showed orange-yellow, red, and green colors due to the serial combination of poly(3-butylthiophene), poly(3-methylthiophene), and poly(3,4-ethylenedioxythiophene), respectively, with distinct luminescence intensities. The optical detection sensitivity and stability of LECB-NWs have been enhanced through a nanoscale Cu metal coating onto the NWs, based on surface plasmon resonance coupling and protection against oxidation. The flexibility of the LECB-NWs has been investigated through the folding and unfolding of the NWs by an applied nanotip impetus. The flexible LECB-NWs can be used as highly sensitive optical identification nanosystems for nanoscale or microscale products with complex physical shapes.
Complex nanoparticles (NPs) of poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) NP adsorbed with Au NPs (MEH-PPV/Au NPs) were fabricated through a reprecipitation method. The formation of MEH-PPV/Au NP complexes was confirmed through high-resolution transmission electron microscopy and Fourier transform infrared experiments. The laser confocal microscope photoluminescence (PL) efficiency of the complex MEH-PPV/Au single NP dramatically increased compared with that of the MEH-PPV single NP without Au NPs, which was directly confirmed through color charge-coupled device images. The enhanced PL efficiency of the MEH-PPV/Au NP complex might have originated from the energy transfer effect in a surface plasmon resonance coupling between a MEH-PPV NP and Au NPs. The strong local field enhancement due to nanogaps between Au NPs in the background of a light-emitting MEH-PPV NP might be another origin of the PL enhancement of the NP complex, as supported by finite difference time domain calculations. We also observed the blue shift of the PL peaks of the single MEH-PPV and MEH-PPV/Au NP, compared with the solution PL peaks of those NPs.
Multilayer MoS 2 is a promising active material for sensing, energy harvesting, and optoelectronic devices owing to its intriguing tunable electronic band structure. However, its optoelectronic applications have been limited due to its indirect band gap nature. In this study, we fabricated a new type of phototransistor using multilayer MoS 2 crystal hybridized with p-type organic semiconducting rubrene patches. Owing to the outstanding photophysical properties of rubrene, the device characteristics such as charge mobility and photoresponsivity were considerably enhanced to an extent depending on the thickness of the rubrene patches. The enhanced photoresponsive conductance was analyzed in terms of the charge transfer doping effect, validated by the results of the nanoscale laser confocal microscope photoluminescence (PL) and time-resolved PL measurements.
Nanometer-scale optical waveguides are attractive due to their potential applicability in photonic integration, optoelectronic communication, and optical sensors. Nanoscale white light-emitting and/or polychromatic optical waveguides are desired for miniature white-light generators in microphotonic circuits. Here, polychromatic (i.e., blue, green, and red) optical waveguiding characteristics are presented using a novel hybrid composite of highly crystalline blue light-emitting organic nanowires (NWs) combined with blue, green, and red CdSe/ZnS quantum dots (QDs). Near white-color waveguiding is achieved for organic NWs hybridized with green and red QDs. Light, emitted from QDs, can be transferred to the organic NW and then optically waveguided through highly packed π-conjugated organic molecules in the NW with different decay characteristics. Remote biosensing using dye-attached biomaterials is presented by adapting the transportation of QD-emitted light through the organic NW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.