A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2′ epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials.
Quantum states of quasiparticles in solids are dictated by symmetry. We have experimentally demonstrated quantum states of Dirac electrons in a two-dimensional quasicrystal without translational symmetry. A dodecagonal quasicrystalline order was realized by epitaxial growth of twisted bilayer graphene rotated exactly 30°. We grew the graphene quasicrystal up to a millimeter scale on a silicon carbide surface while maintaining the single rotation angle over an entire sample and successfully isolated the quasicrystal from a substrate, demonstrating its structural and chemical stability under ambient conditions. Multiple Dirac cones replicated with the 12-fold rotational symmetry were observed in angle-resolved photoemission spectra, which revealed anomalous strong interlayer coupling with quasi-periodicity. Our study provides a way to explore physical properties of relativistic fermions with controllable quasicrystalline orders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.