Browning of white adipose tissue (WAT) is currently considered a potential therapeutic strategy to treat diet-induced obesity. While some probiotics have protective effects against diet-induced obesity, the role of probiotics in adipose browning has not been explored. Here, we show that administration of the probiotic bacterium Lactobacillus amylovorus KU4 (LKU4) to mice fed a high-fat diet (HFD) enhanced mitochondrial levels and function, as well as the thermogenic gene program (increased Ucp1, PPARγ, and PGC-1α expression and decreased RIP140 expression), in subcutaneous inguinal WAT and also increased body temperature. Furthermore, LKU4 administration increased the interaction between PPARγ and PGC-1α through release of RIP140 to stimulate Ucp1 expression, thereby promoting browning of white adipocytes. In addition, lactate, the levels of which are elevated in plasma of HFD-fed mice following LKU4 administration, elicited the same effect on the interaction between PPARγ and PGC-1α in 3T3-L1 adipocytes, leading to a brown-like adipocyte phenotype that included enhanced Ucp1 expression, mitochondrial levels and function, and oxygen consumption rate. Together, these data reveal that LKU4 facilitates browning of white adipocytes through the PPARγ-PGC-1α transcriptional complex, at least in part by increasing lactate levels, leading to inhibition of diet-induced obesity.
Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.