Regulation of gene expression by small RNAs (∼20-30 nucleotides in length) plays an essential role in developmental pathways and defense responses against genomic parasites in eukaryotes. MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) commonly direct the inactivation of cognate sequences through a variety of mechanisms, including RNA degradation, translation inhibition, and transcriptional repression. Recent studies have provided considerable insight into the biogenesis and the mode of action of miRNAs and siRNAs. However, relatively little is known about mechanisms of quality control and small RNA decay in RNA interference (RNAi) pathways. Here we show that deletion of MUT68, encoding a terminal nucleotidyltransferase in the alga Chlamydomonas reinhardtii, results in elevated miRNA and siRNA levels. We found that MUT68 plays a role in the untemplated uridylation of the 3′ ends of small RNAs in vivo and stimulates their degradation by the RRP6 exosome subunit in vitro. Moreover, RRP6 depletion also leads to accumulation of small RNAs in vivo. We propose that MUT68 and RRP6 cooperate in the degradation of mature miRNAs and siRNAs, as a quality control mechanism to eliminate dysfunctional or damaged small RNA molecules.exosome | RNA interference | miRNA quality control
Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type-1 (SCA1) neurodegenerative disease and some types of cancer; however, the role of CIC in prostate cancer remains unknown. Here we show that CIC suppresses prostate cancer progression. CIC expression was markedly decreased in human prostatic carcinoma. CIC overexpression suppressed prostate cancer cell proliferation, invasion, and migration, whereas CIC RNAi exerted opposite effects. We found that knock-down of CIC derepresses expression of ETV5 and CRABP1 in LNCaP and PC-3 cells, respectively, thereby promoting cell proliferation and invasion. We also discovered that miR-93, miR-106b, and miR-375, which are known to be frequently overexpressed in prostate cancer patients, cooperatively down-regulate CIC levels to promote cancer progression. Altogether, we suggest miR-93/miR-106b/miR-375-CIC-CRABP1 as a novel key regulatory axis in prostate cancer progression.
Recent studies have shown that the human cathelicidin, LL-37, has antiviral activity against IAV in vitro and in vivo. Neutrophils are important cellular components of the initial innate response to IAV infection. In addition to its direct antimicrobial activities, LL-37 has important immunomodulatory effects. In this study, we explore how LL-37 affects interactions of IAV with human neutrophils. LL-37 did not alter neutrophil uptake of IAV but significantly increased neutrophil H2O2 responses to the virus. IAV stimulated production of NETs in vitro, and this response was increased by preincubating the virus with LL-37. NADPH-oxidase blockade did not reduce IAV-induced NET formation or the increased NET response stimulated by LL-37 + IAV. The increased respiratory burst and NET responses were, however, inhibited by preincubating cells with a formyl peptide receptor blocker, indicating that LL-37 engages these receptors when complexed with IAV. Responses to IAV alone were not inhibited by formyl peptide receptor blockade. It has been reported that LL-37 reduces proinflammatory cytokine responses during IAV infection in vivo. We now show that IAV alone potentiated release of IL-8 from neutrophils, and preincubation with LL-37 reduced IAV-stimulated IL-8 release. These results confirm that LL-37 modulates human neutrophil responses to IAV in a distinctive manner and could have important bearing on the protective effects of LL-37 during IAV infection in vivo.
Our study demonstrates that the CIC-ETV4-MMP1 axis is a regulatory module controlling HCC progression. (Hepatology 2018;67:2287-2301).
Small RNAs (sRNAs; ∼20 to 30 nucleotides in length) play important roles in gene regulation as well as in defense responses against transposons and viruses in eukaryotes. Their biogenesis and modes of action have attracted great attention in recent years. However, many aspects of sRNA function, such as the mechanism(s) of translation repression at postinitiation steps, remain poorly characterized. In the unicellular green alga Chlamydomonas reinhardtii, sRNAs derived from genome-integrated inverted repeat transgenes, perfectly complementary to the 3' untranslated region of a target transcript, can inhibit protein synthesis without or with only minimal mRNA destabilization. Here, we report that the sRNA-repressed transcripts are not altered in their polyadenylation status and they remain associated with polyribosomes, indicating inhibition at a postinitiation step of translation. Interestingly, ribosomes associated with sRNA-repressed transcripts show reduced sensitivity to translation inhibition by some antibiotics, such as cycloheximide, both in ribosome run-off assays and in in vivo experiments. Our results suggest that sRNA-mediated repression of protein synthesis in C. reinhardtii may involve alterations to the function/structural conformation of translating ribosomes. Additionally, sRNA-mediated translation inhibition is now known to occur in a number of phylogenetically diverse eukaryotes, suggesting that this mechanism may have been a feature of an ancestral RNA interference machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.