It has been long thought that Fe-N-C structure, where Fe is bonded with an electronegative heteroatom N, plays a key role as nonprecious metal catalyst for oxygen reduction reaction (ORR) in fuel cells. However, electrocatalytic activity of Fe bonded with electropositive heteroatom P has never been considered for ORR. Herein we report the electrocatalytic activity for ORR of new Fe-P-C.
A wearable thermoelectric generator, woven on a wristband, consisting of chemically exfoliated n- and p-type transition metal dichalcogenide nanosheets.
A new class of electroactive Fe- and P-functionalized reduced graphene oxide is prepared, which illustrates high ORR activity both in alkaline and acidic conditions due to its high surface area and formation of active Fe–P complex.
The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm−1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m−1 K−2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.