Accurate detection of genomic alterations using high-throughput sequencing is an essential component of precision cancer medicine. We characterize the variant allele fractions (VAFs) of somatic single nucleotide variants and indels across 5095 clinical samples profiled using a custom panel, CancerSCAN. Our results demonstrate that a significant fraction of clinically actionable variants have low VAFs, often due to low tumor purity and treatment-induced mutations. The percentages of mutations under 5% VAF across hotspots in EGFR, KRAS, PIK3CA, and BRAF are 16%, 11%, 12%, and 10%, respectively, with 24% for EGFR T790M and 17% for PIK3CA E545. For clinical relevance, we describe two patients for whom targeted therapy achieved remission despite low VAF mutations. We also characterize the read depths necessary to achieve sensitivity and specificity comparable to current laboratory assays. These results show that capturing low VAF mutations at hotspots by sufficient sequencing coverage and carefully tuned algorithms is imperative for a clinical assay.
Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.
Motivation: Identifying altered pathways in an individual is important for understanding disease mechanisms and for the future application of custom therapeutic decisions. Existing pathway analysis techniques are mainly focused on discovering altered pathways between normal and cancer groups and are not suitable for identifying the pathway aberrance that may occur in an individual sample. A simple way to identify individual’s pathway aberrance is to compare normal and tumor data from the same individual. However, the matched normal data from the same individual are often unavailable in clinical situation. Therefore, we suggest a new approach for the personalized identification of altered pathways, making special use of accumulated normal data in cases when a patient’s matched normal data are unavailable. The philosophy behind our method is to quantify the aberrance of an individual sample's pathway by comparing it with accumulated normal samples. We propose and examine personalized extensions of pathway statistics, overrepresentation analysis and functional class scoring, to generate individualized pathway aberrance score.Results: Collected microarray data of normal tissue of lung and colon mucosa are served as reference to investigate a number of cancer individuals of lung adenocarcinoma (LUAD) and colon cancer, respectively. Our method concurrently captures known facts of cancer survival pathways and identifies the pathway aberrances that represent cancer differentiation status and survival. It also provides more improved validation rate of survival-related pathways than when a single cancer sample is interpreted in the context of cancer-only cohort. In addition, our method is useful in classifying unknown samples into cancer or normal groups. Particularly, we identified ‘amino acid synthesis and interconversion’ pathway is a good indicator of LUAD (Area Under the Curve (AUC) 0.982 at independent validation). Clinical importance of the method is providing pathway interpretation of single cancer, even though its matched normal data are unavailable.Availability and implementation: The method was implemented using the R software, available at our Web site: http://bibs.snu.ac.kr/ipas.Contact: tspark@stat.snu.ac.kr or namhuh@samsung.comSupplementary information: Supplementary data are available at Bioinformatics online.
Retinitis pigmentosa (RP) is a type of inherited retinal degenerative disease, which leads to blindness. The primary pathological event of this disease is the death of rods because of genetic mutations. The S334ter-line-3 rat is a transgenic model developed to express a rhodopsin mutation similar to that found in RP. In this study, the rod's death triggered are organization of the cone mosaic into an orderly array of rings. Four observations were relevant to understand this reorganization. First, rods died in hot spots, which progressively increased as circular waves, leaving rod-less zones behind. Second, rings of cones formed around these zones. Third, remodeled Müller glia processes enveloped cones and filled the center of their rings. Zonula occludens-1 located between the photoreceptor inner segments and the apical processes of Müller cells showed in the rings. Fourth, these rings were formed before the onset of cone cell deaths and were maintained until late stages of RP. From these observations,we hypothesize that cone-Müller-cell interactions mediate and maintain the rings. A test of this hypothesis can be performed by injecting DL-a-aminoadipic acid (AAA), which is known to disrupt Müller cell metabolism. A single intravitreal injection of AAA at P50 disrupted the rings of cones 3 days after the injection. These findings indicate that the rearrangement of cones in rings is modulated by Müller cells in RP. Thus, if the relationship between photoreceptors and Müller glia is better understood, the latter could potentially be manipulated for effective neuroprotection or the restoration of normal cone arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.