The receptor-interacting protein kinase 3 (RIPK3) plays crucial roles in programmed necrosis and innate inflammatory responses. However, a little is known about the involvement of RIPK3 in NKT cell-mediated immune responses. Here, we demonstrate that RIPK3 plays an essential role in NKT cell function via activation of the mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5). RIPK3-mediated activation of PGAM5 promotes the expression of cytokines by facilitating nuclear translocation of NFAT and dephosphorylation of dynamin-related protein 1 (Drp1), a GTPase is essential for mitochondrial homoeostasis. Ripk3−/− mice show reduced NKT cell responses to metastatic tumour cells, and both deletion of RIPK3 and pharmacological inhibition of Drp1 protects mice from NKT cell-mediated induction of acute liver damage. Collectively, the results identify a crucial role for RIPK3-PGAM5-Drp1/NFAT signalling in NKT cell activation, and further suggest that RIPK3-PGAM5 signalling may mediate crosstalk between mitochondrial function and immune signalling.
Summary
Background
High‐mobility group box 1 protein (HMGB1) belonging to endogenous danger signals prolongs eosinophil survival and acts as a chemoattractant.
Objective
The authors evaluated the role of HMGB1 in the pathogenesis of asthma characterized by eosinophilic airway inflammation.
Methods
Firstly, HMGB1 expressions in induced sputum obtained from human asthmatics were determined. This was followed by an evaluation of the role of HMGB1 in a murine model of asthma using anti‐HMGB1 antibodies. Then the effect of HMGB1 on the receptor of advanced glycation end products (RAGE) expressions on CD11b‐CD11c+ cells isolated from a murine model of asthma were measured to elucidate the mechanisms involved.
Results
Sputum HMGB1 expressions were markedly higher in asthmatics than in normal controls, and were positively correlated with sputum eosinophilia and sputum TNF‐α, IL‐5 and IL‐13 expressions. In a murine model of asthma, HMGB1 expressions in lung tissue and HMGB1 levels in bronchoalveolar lavage fluid were significantly elevated and eosinophilic airway inflammation, non‐specific airway hyperresponsiveness, and pathological changes were attenuated by blocking HMGB1 activity. Furthermore, we found that enhanced RAGE expressions on CD11b‐CD11c+ also significantly decreased when HMGB1 activity was blocked.
Conclusion and Clinical Relevance
Our findings suggest that HMGB1 plays a key role in the pathogenesis of clinical and experimental asthma characterized by eosinophilic airway inflammation.
TLR-mediated inflammatory signals contribute to the development and severity of asthma and are not reduced by glucocorticoid treatment, which suggests that a TLR-specific antagonist and glucocorticoid are required for the effective control of airway inflammation in asthmatics.
Intestinal infections by attaching and effacing (A/E) bacterial pathogens cause severe colitis and bloody diarrhea. Although p38α in intestine epithelial cells (IEC) plays an important role in promoting protection against A/E bacteria by regulating T cell recruitment, its impact on immune responses remains unclear. In this study, we show that activation of p38α in T cells is critical for the clearance of the A/E pathogen Citrobacter rodentium. Mice deficient of p38α in T cells, but not in macrophages or dendritic cells, were impaired in clearing C. rodentium. Expression of inflammatory cytokines such as IFN-γ by p38α-deficient T cells was reduced, which further reduced the expression of inflammatory cytokines, chemokines and anti-microbial peptide by IECs and led to reduced infiltration of T cells into the infected colon. Administration of IFN-γ activated the mucosal immunity to C. rodentium infection by increasing the expression of inflammation genes and the recruitment of T cells to the site of infection. Thus, p38α contributes to host defense against A/E pathogen infection by regulating the expression of inflammatory cytokines that activate host defense pathways in IECs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.